Energy in Nepal

Last updated
Middle Marshyandi Hydroelectricity Dam, Udipur Middle Marshyandi Hydro Electricity Dam Udipur.jpg
Middle Marshyandi Hydroelectricity Dam, Udipur
Kaligandaki A Hydroelectric Power Station, Second biggest hydropower project producing 144 MW. Kaligandaki Hydro.jpg
Kaligandaki A Hydroelectric Power Station, Second biggest hydropower project producing 144 MW.

Nepal is a country enclosed by land, situated between China and India. It has a total area of 147,181 square kilometers and a population of 29.16 million. [1] It has a small economy, with a GDP of $33.66 billion in 2020, amounting to about 1% of South Asia and 0.04% of the World's GDP.

Contents

Nepal's total energy consumption in 2019/2020 was 14.464 million tons of oil equivalent, increased from 10.29 Mtoe in 2012. [2] Electricity consumption was 3.57  TWh. The energy mix is dominated by traditional sources like firewood and agricultural residue (68.7%), most of this primary energy (about 80%) represents solid biofuels used in the residential sector (for heating, cooking etc.). [2] Smaller shares of energy come from commercial sources like petroleum and coal (28.2%) and renewable sources. [3] About 23% of the electricity is imported, with the rest almost completely supplied by hydroelectricity. Nepal also exports hydroelectricity to India in the wet season.

Nepal has no known major oil, gas, or coal reserves, [4] and its position in the Himalayas makes it hard to reach remote communities. Consequently, in the absence of the energy grid reaching remote locations, most Nepali citizens have historically met their energy needs with biomass, human labor, imported kerosene, and/or traditional vertical axis water mills. Energy consumption per capita is thus low, at one-third the average for Asia as a whole and less than one-fifth of the world average.

The country has considerable hydroelectricity potential. [5] The commercially viable potential is estimated at 44 GW from 66 hydropower sites. [4]

In 2010, the electrification rate was only 53% (leaving 12.5 million people without electricity) and 76% depended on wood for cooking. With about 1 toe for every $1,000 of GDP, Nepal has the poorest energy intensity among all south Asian countries. The country has therefore very large energy efficiency potential. [2]

uurjaa khptko vivrnn (1000 Ton of Oil Equivalent) by fiscal year starting in 2069-70 BS uurjaa khptko vivrnn (1000 Ton of Oil Equivalent).png
ऊर्जा खपतको विवरण (1000 Ton of Oil Equivalent) by fiscal year starting in 2069-70 BS

Oil products

Petroleum is the second largest energy fuel in Nepal after firewood and accounts for 11% of primary energy consumption in the country. [2] All petroleum products are imported from India.

At the moment, the import of petroleum products is transacted exclusively between the Nepal Oil Corporation and the Indian Oil Corporation. [6] 75% of the imports are diesel, kerosene and gasoline. Due to the high energy demand in the country, the dependence on petroleum imports is increasing. More than 62% of the petroleum products are used in the transportation sector. Besides that, petroleum products constitute important energy sources for cooking purposes in households.

Biomass

Biomass is by far the most important primary energy source in Nepal. Biomass comprises wood, agricultural residues and dung.

One major problem with this is that burning these biomass substances for cooking is a common practice (87.3%) and thus exposes those living in the house to harmful air pollutants. [7] Those who cook and live a substantial amount of time in the household (often women and children) are exposed to these pollutants and incur a high risk of acute respiratory infection. In addition, the burning of these biomass fuels often emits large quantities of greenhouse gases (GHGs) into the outside air. One study in a mountain village of Nepal showed that carbon emissions from traditional cooking methods were around 8 tons per person per year. [8]

Biogas

The farming system in Nepal is heavily dependent on livestock, with at least 1.2 million households owning cattle and buffalo. The biogas potential is therefore high and is estimated to be at least one million household-size plants, 57% located in the Terai plains, 37% in the hills and 6% in remote hills.

According to Nepal's Alternative Energy Promotion Centre , as of July 2011, 241,920 biogas plants were installed in more than 2,800 Village Development Committee areas and in all 75 Districts under their Biogas Support Program. [9]

Biogas uses anaerobic digestion, in which microorganisms break down organic matter into methane and carbon dioxide without oxygen. [10] A positive byproduct of biogas is that excess wastes produced by the system can be used as organic fertilizer. [10] Biogas as an alternative energy source helps reduce dependence on low grade energy sources (biomass) which pose significant health risks and contribute to GHG emissions. The Nepalese have reported barriers to biogas implementation, including the large upfront capital costs, the inability of traditional biogas systems to operate in cold and mountainous climates, and the isolation of villages making installation logistics more difficult. [11]

Renewable energy

Renewable energy in Nepal comes from hydropower, solar energy, biomass, biogas, and wind energy. [12]

Solar

Nepal has favorable solar resources, receiving average solar radiation of 3.6 to 6.2 kW/m2/day.[ Possibly this is meant to be 3.6–6.2 kJ.m−2 per day. kW is already a rate, and it makes no sense to divide it by a time unit. ] Sunshine duration is around three hundred days per year or 6.8 hours per day, equivalent to approximately 2100 hours annually. This indicates good potential for solar power generation across most regions in Nepal. [13] Nepal's favorable solar resources have attracted interest in solar technology due to their relatively low upfront costs and fast installation. As a result, some solar applications like household lighting, water pumping, water treatment, domestic space, and water heating have been used in Nepal over the past few decades. Although the solar technology implementation in Nepal has been a small, isolated system, extensive integration is possible into the national grid. It might contribute significantly to fulfilling overall energy demand in Nepal. [13] The Government of Nepal plans to develop a large-scale 250 MW solar project in the Tarai plains, including a 20 MW storage system [14]

Hydropower

Nepal has a highly mountainous landscape, with elevations rising from 60 meters above sea level to 8848 meters within an average north-south distance of less than 150km. An annual water discharge of 225 billion cubic meters flows out of the country, supplemented by high hydraulic heads. [15] Nepal is often called the "water tower of South Asia" due to its vast water resources. The country's rugged topography, numerous rivers and streams with 6000[ clarification needed ] a total length of about 45,000 km, lends itself to hydropower generation. [16] Hydroelectric potential in Nepal is approximately 83000 Megawatts, of which 45,000MW are economically and technically viable. [17]

Around 86% of Nepal's population has access to grid electricity, while 10% depend on off-grid distributed generation, mainly from renewables; between 2018 and May 2022, Nepal doubled its installed capacity from 1,069 MW to 2,100 MW. Continuing capacity expansion can be used to address long-suppressed domestic demand, replace imported fossil fuels, and export to the South Asian region. [18]

The rivers of Nepal can be broadly classified into three types according to their origins:

  1. The four central river systems of the country: Koshi, Gandaki, Karnali, and Mahakali. All of them originate from glaciers and snow-fed lakes.
  2. Rivers originating from the Mahabharat range, including Babai, West Rapti, Bagmati, Kamala, Kankai, and Mechi.
  3. Streams and rivulets originating from the Chure hills; these rivers cause flash floods during monsoon rains but have very little or no flow during the dry season. [19]

At present, about 10% of the total rainfall in Nepal falls as snow. Around 23% of the country's land area is above the enduring snow line at 5000 meters. Glaciers cover about 3.6 percent of Nepal's total area. Nepal has 3,252 glaciers spanning an area of 5,323 square kilometers, with an ice reserve of around 481 cubic kilometers. The country also has 2,323 glacial lakes encompassing 75 square kilometers. [20]

Small-scale hydroelectricity generation in Nepal dates back to the 1960s, when the government promoted subsidies for remote installations. The semi-government[ clarification needed ] Nepal Electricity Authority is responsible for significant hydropower projects. The Alternative Energy Promotion Centre (AEPC) was established as an autonomous institution in 1996 to promote large-scale sustainable renewable energy use under the Ninth National Plan. It has been mandated to advance various renewable energy technologies in Nepal. [3] [18] The AEPC is the government agency responsible for promoting renewable energy technologies. It provides subsidies and technical assistance to community and regional government offices.

The Nepal Micro-Hydro Development Association represents around 60 microhydropower companies in the country. [21] It advocates for these companies and regulates training for plant operators and managers. Locally, district coordination committees represent communities within a district. These committees usually provide financial support to renewable energy projects in their districts. [22]

Around 3300 micro-hydropower plants in Nepal are owned and operated by local communities. Most of these have been funded through AEPC subsidies. These projects are an option for increasing energy access in off-grid areas, especially in remote and rural areas, which supports the sustainable livelihood of people. [23] Micro hydro power benefits rural communities through increased income, reduced fossil fuel reliance, and benefits to health and education. However, some projects face issues like poor maintenance, unequal benefit distribution, and insufficient income – reducing sustainability. [21]

The government of Nepal (GoN) has identified the development of hydropower resources as the path to the country's economic development in the long term. Consequently, GoN has set a target to develop 15 GW in the next ten years and around 40 GW by 2040, which GoN plans to use mainly for domestic load demand and export to neighboring countries. [15] GoN, government-owned entities, Independent Power Producers (IPPs), and internationally funded power producers are actively involved in the hydropower development in Nepal. However, developing a robust and reliable national transmission network is essential to properly transmit, distribute, and export power generated from these hydroelectric plants (NEA/GoN, 2023). At present much attention and investment have been focused mainly on the development of hydroelectricity generation plants. Planned transmission system development has been a less discussed topic, resulting in an ad hoc approach to transmission system development. [14]

The Nepal Electricity Authority(NEA) is Nepal's sole operator and distributor of electricity. In 2022, NEA achieved a total installed capacity of 626.7 megawatts, generating 3,242.5 gigawatt-hours of electricity. [14] There was a significant 14.61% increase in generation compared to the previous year. The peak annual national demand for electricity has reached 1,748 MW. During fiscal year 2078/79[ clarification needed ], Nepal exported 493.6 GWh of electrical energy. The only operating thermal power plant is the Hetauda diesel plant, with 14.41 MW capacity and generating 32.51 MWh of energy per year. There are currently eight active projects under development totaling 943.1 MW capacity, and 11 planned and proposed projects could add a further 3,450 MW. Independent Power Produces (IPP) also play a significant role. As of December 2022, IPP-installed projects have 17,09 MW[ clarification needed ][ lakhs?? ] capacity. There are 134 ongoing IPP projects with financial closure[ clarification needed ] totaling 3,253.3 MW capacity. Additionally, there are 89 IPP projects under development without financial closure but with a potential capacity of 1,857.4 MW. The electrification rate in Nepal has notably improved in recent years, with access rising from 93% in 2020/21 to 94 % in 2021/22. The government aims to achieve 100% electricity access nationwide by 2024. [14]

In the wet season, Nepal exports its surplus hydroelectricity to India through Indian Energy Exchange. As of 8 June 2022, four of Nepal's hydroelectricity projects export a total of 234 MW of electricity to the Indian market. [24]

Wind

Nepal has substantial wind energy potential, with estimates of over 3000 MW total capacity. Around 448 MW is commercially viable for electricity generation. [25] Nepal's wind energy potential is concentrated in the high mountains and mid-hills regions, with favorable sites over 3,300 meters above sea level. Despite low population density and arduous geographical conditions, Khumbu Region, Kagbeni, Chusang, Thakmarpha, and Khanjiroba are some of the high-potential mountain areas for wind energy. [26]

Despite having immense potential, there has yet to be much progress in developing wind energy in Nepal. The two 10kw wind turbines installed by the Nepal Electricity Authority in Kagbeni, Mustang, in 1989 were destroyed within three months. [27] During 2018, there were only 113.6 KW of total installed wind capacity, 65 KW from AEPC, 3.5 KW from Practical Action, and 45.1 KW from the private sector. Despite some small initiatives, Nepal has abundant wind energy resources that are primarily unutilized because of inadequate policies and insufficient Investment in the sector. [28]

Coal

The coal production in the nation was 7250.1 tons in FY 2076/77 BS [ clarification needed ]. This value increased to 11303.9 tons in FY 2077/78 and dropped in FY 2078/79 to 6927.04 tons. A total of 9 licenses were issued in each fiscal year 2076/77 to 2078/79 for coal production. The leading consumer of coal in Nepal is the brick-manufacturing industry. [14]

Other

In addition to traditional energy sources, Nepal has other potential resources, including municipal solid waste, industrial by-products like bagasse from sugar production, secondary wood sources such as logging residue and sawmill waste, furniture production scraps, and agricultural crop and bush residues. Hydrogen fuel is another potential energy source where research is ongoing. [3]

In conclusion, Nepal's renewable energy potential in hydropower, wind, and solar energy is extensive. High snow-covered mountains, glacial rivers, and high solar radiation show its higher potential. However, investment in such sources has been limmited. So Nepal must focus on attracting investment, addressing infrastructure challenges, implementing supportive policies, and engaging with the local community. The transition to renewable energy is not only a sustainable energy choice but also an opportunity for Nepal to enhance energy access, reduce its carbon footprint, and contribute to regional energy security.

See also

Related Research Articles

The energy policy of India is to increase the locally produced energy in India and reduce energy poverty, with more focus on developing alternative sources of energy, particularly nuclear, solar and wind energy. Net energy import dependency was 40.9% in 2021-22.

For solar power, South Asia has the ideal combination of both high solar insolation and a high density of potential customers.

<span class="mw-page-title-main">Renewable energy in Honduras</span> Overview of the use of renewable energy in Honduras

In Honduras, there is an important potential of untapped indigenous renewable energy resources. Due to the variability of high oil prices and declining renewable infrastructure costs, such resources could be developed at competitive prices.

Morocco's energy policy is set independently by two agencies of the government: the Office of Hydrocarbons and Mining (ONHYM) which sets domestic oil policy, and the Office National de l'Electricité (ONE), which sets policy with regard to electricity. The two major weaknesses of the energy policy of Morocco are the lack of coordination between these two agencies and the lack of development of domestic energy sources.

<span class="mw-page-title-main">Renewable energy in India</span>

India is the world's 4th largest consumer of electricity and the world's 3rd largest renewable energy producer with 40% of energy capacity installed in the year 2022 coming from renewable sources. Ernst & Young's (EY) 2021 Renewable Energy Country Attractiveness Index (RECAI) ranked India 3rd behind USA and China. In FY2023-24, India is planning to issue 50 GW tenders for wind, solar and hybrid projects. India has committed for a goal of 500 GW renewable energy capacity by 2030. In line with this commitment, India's installed renewable energy capacity has been experiencing a steady upward trend. From 94.4 GW in 2021, the capacity has gone up to 119.1 GW in 2023 as of Q4.

<span class="mw-page-title-main">Energy in the Democratic Republic of the Congo</span>

The Democratic Republic of the Congo was a net energy exporter in 2008. Most energy was consumed domestically in 2008. According to the IEA statistics the energy export was in 2008 small and less than from the Republic of Congo. 2010 population figures were 3.8 million for the RC compared to CDR 67.8 Million.

<span class="mw-page-title-main">Electricity sector in Uruguay</span>

The electricity sector of Uruguay has traditionally been based on domestic hydropower along with thermal power plants, and reliant on imports from Argentina and Brazil at times of peak demand. Over the last 10 years, investments in renewable energy sources such as wind power and solar power allowed the country to cover in early 2016 94.5% of its electricity needs with renewable energy sources.

<span class="mw-page-title-main">Renewable energy in Nepal</span> Overview of renewable energy in Nepal

Renewable energy in Nepal is a sector that is rapidly developing in Nepal. While Nepal mainly relies on burning biomass for its energy needs, solar and wind power is being seen as an important supplement to solve its energy crisis. The most common form of renewable energy in Nepal is hydroelectricity.

<span class="mw-page-title-main">Renewable energy in Kenya</span>

Most of Kenya's electricity is generated by renewable energy sources. Access to reliable, affordable, and sustainable energy is one of the 17 main goals of the United Nations’ Sustainable Development Goals. Development of the energy sector is also critical to help Kenya achieve the goals in Kenya Vision 2030 to become a newly industrializing, middle-income country. With an installed power capacity of 2,819 MW, Kenya currently generates 826 MW hydroelectric power, 828 geothermal power, 749 MW thermal power, 331 MW wind power, and the rest from solar and biomass sources. Kenya is the largest geothermal energy producer in Africa and also has the largest wind farm on the continent. In March 2011, Kenya opened Africa's first carbon exchange to promote investments in renewable energy projects. Kenya has also been selected as a pilot country under the Scaling-Up Renewable Energy Programmes in Low Income Countries Programme to increase deployment of renewable energy solutions in low-income countries. Despite significant strides in renewable energy development, about a quarter of the Kenyan population still lacks access to electricity, necessitating policy changes to diversify the energy generation mix and promote public-private partnerships for financing renewable energy projects.

<span class="mw-page-title-main">Renewable energy in Ethiopia</span>

Ethiopia generates most of its electricity from renewable energy, mainly hydropower.

<span class="mw-page-title-main">Renewable energy in Afghanistan</span>

Renewable energy in Afghanistan includes biomass, geothermal, hydropower, solar, and wind power. Afghanistan is a landlocked country surrounded by five other countries. With a population of less than 35 million people, it is one of the lowest energy consuming countries in relation to a global standing. It holds a spot as one of the countries with a smaller ecological footprint. Hydropower is currently the main source of renewable energy due to Afghanistan's geographical location. Its large mountainous environment facilitates the siting of hydroelectric dams and other facets of hydro energy.

Renewable energy in Bhutan is the use of renewable energy for electricity generation in Bhutan. The renewable energy sources include hydropower.

<span class="mw-page-title-main">Energy in Georgia (country)</span> Energy generation and consumption in Georgia

Georgia had a total primary energy supply (TPES) of 4.793 Mtoe in 2016. Electricity consumption was 11.5 TWh in 2016. Electricity production was 11.6 TWh, of which 81% from hydroelectricity and 19% from natural gas.

Myanmar had a total primary energy supply (TPES) of 16.57 Mtoe in 2013. Electricity consumption was 8.71 TWh. 65% of the primary energy supply consists of biomass energy, used almost exclusively (97%) in the residential sector. Myanmar’s energy consumption per capita is one of the lowest in Southeast Asia due to the low electrification rate and a widespread poverty. An estimated 65% of the population is not connected to the national grid. Energy consumption is growing rapidly, however, with an average annual growth rate of 3.3% from 2000 to 2007.

In 2013, renewable energy provided 26.44% of the total electricity in the Philippines and 19,903 gigawatt-hours (GWh) of electrical energy out of a total demand of 75,266 gigawatt-hours. The Philippines is a net importer of fossil fuels. For the sake of energy security, there is momentum to develop renewable energy sources. The types available include hydropower, geothermal power, wind power, solar power and biomass power. The government of the Philippines has legislated a number of policies in order to increase the use of renewable energy by the country.

There is enormous potential for renewable energy in Kazakhstan, particularly from wind and small hydropower plants. The Republic of Kazakhstan has the potential to generate 10 times as much power as it currently needs from wind energy alone. But renewable energy accounts for just 0.6 percent of all power installations. Of that, 95 percent comes from small hydropower projects. The main barriers to investment in renewable energy are relatively high financing costs and an absence of uniform feed-in tariffs for electricity from renewable sources. The amount and duration of renewable energy feed-in tariffs are separately evaluated for each project, based on feasibility studies and project-specific generation costs. Power from wind, solar, biomass and water up to 35 MW, plus geothermal sources, are eligible for the tariff and transmission companies are required to purchase the energy of renewable energy producers. An amendment that introduces and clarifies technology-specific tariffs is now being prepared. It is expected to be adopted by Parliament by the end of 2014. In addition, the World Bank's Ease of Doing Business indicator shows the country to be relatively investor-friendly, ranking it in 10th position for investor protection.

<span class="mw-page-title-main">Renewable energy in South Africa</span>

Renewable energy in South Africa is energy generated in South Africa from renewable resources, those that naturally replenish themselves—such as sunlight, wind, tides, waves, rain, biomass, and geothermal heat. Renewable energy focuses on four core areas: electricity generation, air and water heating/cooling, transportation, and rural energy services. The energy sector in South Africa is an important component of global energy regimes due to the country's innovation and advances in renewable energy. South Africa's greenhouse gas (GHG) emissions is ranked as moderate and its per capita emission rate is higher than the global average. Energy demand within the country is expected to rise steadily and double by 2025.

Vietnam utilizes four main sources of renewable energy: hydroelectricity, wind power, solar power and biomass. At the end of 2018, hydropower was the largest source of renewable energy, contributing about 40% to the total national electricity capacity. In 2020, wind and solar had a combined share of 10% of the country's electrical generation, already meeting the government's 2030 goal, suggesting future displacement of growth of coal capacity. By the end of 2020, the total installed capacity of solar and wind power had reached over 17 GW. Over 25% of total power capacity is from variable renewable energy sources. The commercial biomass electricity generation is currently slow and limited to valorizing bagasse only, but the stream of forest products, agricultural and municipal waste is increasing. The government is studying a renewable portfolio standard that could promote this energy source.

<span class="mw-page-title-main">Renewable energy in Ukraine</span>

In Ukraine, the share of renewables within the total energy mix is less than 5%. In 2020 10% of electricity was generated from renewables; made up of 5% hydro, 4% wind, and 1% solar. Biomass provides renewable heat.

Zambia is potentially self-sufficient in sources of electricity, coal, biomass and renewable energy. The only energy source where the country is not self-sufficient is petroleum energy. Many of the sources of energy where the country is self-sufficient are largely unexploited. As of 2017, the country's electricity generating capacity stood at 1,901 megawatts.

References

  1. CBS, G. o. N., National Statistic Office. (2021). National Population and Housing Census 2021.
  2. 1 2 3 4 "Nepal". www.iea.org. International Energy Agency (IEA). Archived from the original on 4 March 2016. Retrieved 16 November 2015.
  3. 1 2 3 AEPC, A. E. P. C. (2021). Annual Report.
  4. 1 2 "Nepal". USAID South Asia Regional Initiative for Energy Integration (SARI/EI). Archived from the original on 25 April 2012. Retrieved 16 November 2015.
  5. Kaini, Prakash; Annandale, George (January 11, 2019). "The Way Forward for Nepal's Hydropower Development". Hydro Review. Retrieved 2019-08-29.
  6. "About us". Nepal Oil Corporation. Archived from the original on 7 March 2016. Retrieved 19 November 2015.
  7. Ranabhat Chhabi Lal et al., "Consequence of indoor air pollution in rural area of Nepal: a simplified measurement approach," Frontiers in Public Health 3 (2015), https://doi.org/10.3389/fpubh.2015.00005.
  8. Suwal Rajani and Bajracharya Siddhartha Bajra, "Assessment of Current Energy Consumption Practices, Carbon Emissions and Indoor Air Pollution in Samagaun, Manaslu Conservation Area, Nepal," Journal of Natural Resources and Development 6 (2016), https://doi.org/10.5027/jnrd.v6i0.07.
  9. "Installed biogas plants". Alternative Energy Promotion Centre (AEPC). Retrieved 19 November 2015.
  10. 1 2 David Fulford, Small-scale rural biogas programmes a handbook (Rugby, England]: Rugby, England : Practical Action Publishing, 2015)
  11. Gloria V. Rupf et al., "Barriers and opportunities of biogas dissemination in Sub-Saharan Africa and lessons learned from Rwanda, Tanzania, China, India, and Nepal," Renewable and Sustainable Energy Reviews 52, no. C (2015), https://doi.org/10.1016/j.rser.2015.07.107.
  12. "Renewable energy: Huge potentials". The Himalayan Times. 2017-10-05. Retrieved 2019-08-29.
  13. 1 2 Bhattarai, U., Maraseni, T., Apan, A., & Devkota, L. P. (2023). Rationalizing donations and subsidies: Energy ecosystem development for sustainable renewable energy transition in Nepal. Energy Policy, 177, 113570.
  14. 1 2 3 4 5 NEA/GoN, N. E. A. (2023). Energy Synopsis Report 2023.
  15. 1 2 Authority, N. E. (2020). Nepal Electricity Authority a year in review—The fiscal year 2019/2020. In: Kathmandu.
  16. Adhikari, D. (2006). Hydropower development in Nepal. NRB Economic Review, pp. 70–94.
  17. Alam, F., Alam, Q., Reza, S., Khurshid-ul-Alam, S., Saleque, K., & Chowdhury, H. (2017). A review of hydropower projects in Nepal. Energy Procedia, 110, 581-585.
  18. 1 2 PROJECT, U. U. N. (2022). Tariff-based competitive procurement of solar power in Nepal. D. C. LLP. https://pdf.usaid.gov/pdf_docs/PA00ZKT9.pdf
  19. ADB, I. (2006). Environment assessment of Nepal: Emerging Issues and Challenges. Kathmandu: ICIMOD.
  20. Mool, P. K., Wangda, D., Bajracharya, S. R., Kunzang, K., Gurung, D. R., & Joshi, S. P. (2001). Inventory of glaciers, glacial lakes, and glacial lake outburst floods. Monitoring and early warning systems in the Hindu Kush-Himalayan Region: Bhutan. Inventory of glaciers, glacial lakes, and glacial lake outburst floods. Monitoring and early warning systems in the Hindu Kush-Himalayan Region: Bhutan.
  21. 1 2 Butchers, J., Williamson, S., Booker, J., Tran, A., Karki, P. B., & Gautam, B. (2020). Understanding the sustainable operation of micro-hydropower: A field study in Nepal. Energy for Sustainable Development, 57, 12-21.
  22. Kumar, P., Yamashita, T., Karki, A., Rajshekar, S., Shrestha, A., Yadav, A., & Asia, S. (2015). Nepal-Scaling up electricity access through mini and micro hydropower applications: a strategic stock-taking and developing a future roadmap (Vol. 2): Summary. Washington, DC: World Bank Group. Available online at: http://documents. worldbank. Org/curated/en/527221467993505663/Summary.
  23. Conroy, C., & Litvinoff, M. (2013). The greening of aid: Sustainable livelihoods in practice. Routledge.
  24. "भारतमा बिजुली बेच्ने चौथो आयोजना बन्यो मर्स्याङ्दी". Kantipur (in Nepali). 8 June 2022. Retrieved 8 June 2022. मर्स्याङ्दीसहित विभिन्न ४ वटा आयोजनाबाट ५६ सय मेगावाट आवर (करिब २ सय ३४ मेगावाट) बिजुली भारतमा बेचिरहेको नेपाल विद्युत् प्राधिकरणका प्रवक्ता सुरेश भट्टराइले जानकारी दिए ।
  25. Shrestha, R. Y. (2009). Small-scale wind energy market and institutional model for Nepal. Wind Engineering, 33(2), 109-121.
  26. Bhattarai, U., Maraseni, T., Apan, A., & Devkota, L. P. (2023). Rationalizing donations and subsidies: Energy ecosystem development for sustainable renewable energy transition in Nepal. Energy Policy, 177, 113570.
  27. Ghimire, M., & Poudel, R. C. (2010). Wind energy resource assessment and feasibility study of the wind farm in Kaligandaki riverbank of Mustang district. Nepal Journal of Science and Technology, 11, 159-166.
  28. AEPC, A. E. P. C. (2021). Annual Report.