ExPRESS Logistics Carrier

Last updated
ExPRESS Logistics Carrier number 1 ELC-1 Keel side.png
ExPRESS Logistics Carrier number 1

An EXpedite the PRocessing of Experiments to Space Station (ExPRESS) Logistics Carrier (ELC) is an unpressurized attached payload platform for the International Space Station (ISS) that provides mechanical mounting surfaces, electrical power, and command and data handling services for Orbital Replacement Units (ORUs) as well as science experiments on the ISS. The ELCs were developed primarily at the Goddard Space Flight Center in Greenbelt, Maryland, with support from JSC, KSC, and MSFC. ELC was formerly called "Express Pallet" and is the unpressurized counterpart to the pressurized ExPRESS Rack. An ELC provides scientists with a platform and infrastructure to deploy experiments in the vacuum of space without requiring a separate dedicated Earth-orbiting satellite.

Contents

ELCs interface directly with the ISS integrated truss common attach system (CAS). [1] The P3 Truss has two such attach points called Unpressurised Cargo Carrier Attachment System (UCCAS) mechanisms, one facing zenith (space facing) called UCCAS-1, the other facing nadir (earth facing) called UCCAS-2. The S3 Truss has four similar locations called Payload Attachment System (PAS) mechanisms, two facing Zenith (PAS-1 and PAS-2), and two facing Nadir (PAS-3 and PAS-4).

Description

Layout and structure of the ELC ELC general layout.jpg
Layout and structure of the ELC
ELC steel framework during final fabrication at GSFC 402222main Techs working on ELC 1019.jpg
ELC steel framework during final fabrication at GSFC

The ELC are four un-pressurized attached payloads, some designed by the Brazilian Space Agency, [2] for the International Space Station (ISS) that provides mechanical mounting surfaces, electrical power, and command and data handling services for science experiments on the ISS. The ELCs have a deck size of about 14 feet by 16 feet and spans the width of the space shuttle's payload bay. They are made of steel, coated with UV paint. Each one is capable of providing scientists with a platform and infrastructure to deploy experiments in the vacuum of space without requiring a separate dedicated Earth-orbiting satellite. Each carrier is capable of carrying 9,800 lbs. to orbit and will also serve as parking fixtures for spare ISS hardware (ORUs) which can be retrieved when needed. [3] Experiments are mounted on ExPRESS payload adapters (ExPA) which are about the same size as the FRAMs that hold ORUs.

Electrical subsystem ExPRESS carrier avionics (ExPCA)

Within the electrical subsystem of the ELC, the ExPRESS carrier avionics (ExPCA) provides electrical power distribution to experiments, and data interfaces to the ISS. Within the ExPCA, the ColdFire-based flight computer, software, and related electronics comprise its "flight controller unit" (FCU). The FCU runs the free open-source real-time operating system (RTOS) RTEMS and provides the computing and communication resources as an ELC Command and Data Handling (C&DH) system with the following major goals:

Manifested on ELC-2 was the first ELC-based payload, Materials for ISS Experiment (MISSE-7). [4] mounted on an ExPA.

ELC launch schedule

ELC-1 and ELC-2 were transported to the International Space Station by Space Shuttle Atlantis on mission STS-129 in November 2009. ELC-4 launched on mission STS-133 Discovery on 24 February 2011 and was installed on the station on 27 February. ELC-3 launched on mission STS-134 Endeavour on 16 May 2011 and was installed on the station on 18 May.

The Alpha Magnetic Spectrometer occupies the mounting location intended for ELC-5 on the ISS truss.

Launch dateMissionShuttleELC
16 November 2009 STS-129 (ISS ULF3)AtlantisELC-1 and ELC-2
24 February 2011 STS-133 (ISS ULF5)DiscoveryELC-4
16 May 2011 STS-134 (ISS ULF6)EndeavourELC-3

Locations and components [5]

Location of ELCs and ESPs on the International Space Station. ISS Unpressurized Platforms.png
Location of ELCs and ESPs on the International Space Station.

ELC-1

ExPRESS Logistics Carrier 1
Express 1 2.JPG
ELCs 1 & 2 in the Space Shuttle Atlantis cargo bay.
Module statistics
Part of International Space Station
Launch date 16 November 2009, 19:28:09 (2009-11-16UTC19:28:09Z) UTC
Launch vehicle Space Shuttle/STS-129
Berthed 18 November 2009, 21:27 (2009-11-18UTC21:27Z) at P3 truss
Mass 6,280 kg (13,840 lb)
ELC-1 in its launch configuration, note STP-H4 added Aug. 2013 ELC-1 ART layout.png
ELC-1 in its launch configuration, note STP-H4 added Aug. 2013

ELC-1 is located on the P3 truss at the UCCAS-2 (nadir, earth facing) site. ELC-1 weighs approx. 13,840 lbs. [6] A FRAM is a Flight Releasable Attachment Mechanism.

ELC-2

ExPRESS Logistics Carrier 2
Express 1 2.JPG
ELCs 1 & 2 in the Space Shuttle Atlantis cargo bay.
Module statistics
Part of International Space Station
Launch date 16 November 2009, 19:28:09 (2009-11-16UTC19:28:09Z) UTC
Launch vehicle Space Shuttle/STS-129
Berthed 21 November 2009, 14:14 (2009-11-21UTC14:14Z) at S3 truss
Mass 6,100 kg (13,400 lb)
ELC-2 in its launch configuration, note changes since installation ELC-2 ART layout.png
ELC-2 in its launch configuration, note changes since installation

ELC-2 is located on the S3 truss at the PAS-1 (zenith, space facing) site, alongside AMS-2 at PAS-2. ELC-2 weighs approx. 13,400 lbs. [6]

ELC-3

ExPRESS Logistics Carrier 3
Module statistics
Part of International Space Station
Launch date 16 May 2011, 12:56:28 (2011-05-16UTC12:56:28Z) UTC
Launch vehicle Space Shuttle/STS-134
Berthed 18 May 2011, 16:18 (2011-05-18UTC16:18Z) at S3 truss
Mass 6,361 kg (14,023 lb)
ELC-3 in its launch configuration, note STP-H3 removed, SCAN added ELC-3 STS-134 Launch Config.jpg
ELC-3 in its launch configuration, note STP-H3 removed, SCAN added

ELC-3 is located on the P3 truss at the UCCAS-1 (zenith, space facing) site. ELC-3 weighs 14,023 lbs. [11]

ELC-4

ExPRESS Logistics Carrier 4
STS133 ELC-4.jpg
In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, technicians perform the ELC-4, deck-to-keel mate.
Module statistics
Part of International Space Station
Launch date 24 February 2011, 21:53:24 (2011-02-24UTC21:53:24Z) UTC
Launch vehicle Space Shuttle/STS-133
Berthed 27 February 2011, 03:22 (2011-02-27UTC03:22Z) at S3 truss
Mass 3,735 kg (8,235 lb)
ELC-4 in its launch configuration ELC-4 STS-133 Launch Config.jpg
ELC-4 in its launch configuration
ELC-4 updated FRAM ORUs ELC-4 updated FRAM ORUs.jpg
ELC-4 updated FRAM ORUs

ELC-4 is located on the S3 truss at the PAS-4 (nadir, earth facing) site, alongside ESP-3 at PAS-3. ELC-4 weighs 8,235 lbs. [20]

ISS truss components and ORUs in situ Truss breakdown.png
ISS truss components and ORUs in situ

See also

Related Research Articles

<i>Columbus</i> (ISS module) ESA science observatory on the International Space Station

Columbus is a science laboratory that is part of the International Space Station (ISS) and is the largest single contribution to the ISS made by the European Space Agency (ESA).

<i>Kibō</i> (ISS module) Japanese ISS module, used on ISS press conferences

The Japanese Experiment Module (JEM), nicknamed Kibō, is a Japanese science module for the International Space Station (ISS) developed by JAXA. It is the largest single ISS module, and is attached to the Harmony module. The first two pieces of the module were launched on Space Shuttle missions STS-123 and STS-124. The third and final components were launched on STS-127.

<span class="mw-page-title-main">Mobile Servicing System</span> Robotic system on board the International Space Station

The Mobile Servicing System (MSS), is a robotic system on board the International Space Station (ISS). Launched to the ISS in 2001, it plays a key role in station assembly and maintenance; it moves equipment and supplies around the station, supports astronauts working in space, and services instruments and other payloads attached to the ISS and is used for external maintenance. Astronauts receive specialized training to enable them to perform these functions with the various systems of the MSS.

<span class="mw-page-title-main">Dextre</span> Robotic arm on ISS

Dextre, also known as the Special Purpose Dexterous Manipulator (SPDM), is a two-armed robot, or telemanipulator, which is part of the Mobile Servicing System on the International Space Station (ISS), and does repairs that would otherwise require astronauts to do spacewalks. It was launched on March 11, 2008, on the mission STS-123.

<span class="mw-page-title-main">External stowage platform</span>

External stowage platforms (ESPs) are key components of the International Space Station (ISS). Each platform is made from steel and serves as an external pallet that can hold spare parts, also known as orbital replacement units (ORUs), for the space station. As a platform it is not pressurized, but does require electricity to power the heaters of some of the stored equipment. ORUs are attached to the ESP via Flight Releasable Attachment Mechanisms (FRAMs), matching witness plates that mate the ORU to the platform.

<span class="mw-page-title-main">STS-127</span> 2009 American crewed spaceflight to the ISS

STS-127 was a NASA Space Shuttle mission to the International Space Station (ISS). It was the twenty-third flight of Space ShuttleEndeavour. The primary purpose of the STS-127 mission was to deliver and install the final two components of the Japanese Experiment Module: the Exposed Facility, and the Exposed Section of the Experiment Logistics Module (ELM-ES). When Endeavour docked with the ISS on this mission in July 2009, it set a record for the most humans in space at the same time in the same vehicle, the first time thirteen people have been at the station at the same time. Together they represented all ISS program partners and tied the general record of thirteen people in space with the first such occurrence of 1995.

<span class="mw-page-title-main">STS-133</span> 2011 American crewed spaceflight to the ISS and final flight of Space Shuttle Discovery

STS-133 was the 133rd mission in NASA's Space Shuttle program; during the mission, Space Shuttle Discovery docked with the International Space Station. It was Discovery's 39th and final mission. The mission launched on February 24, 2011, and landed on March 9, 2011. The crew consisted of six American astronauts, all of whom had been on prior spaceflights, headed by Commander Steven Lindsey. The crew joined the long-duration six person crew of Expedition 26, who were already aboard the space station. About a month before lift-off, one of the original crew members, Tim Kopra, was injured in a bicycle accident. He was replaced by Stephen Bowen.

<span class="mw-page-title-main">STS-123</span> 2008 American crewed spaceflight to the ISS

STS-123 was a Space Shuttle mission to the International Space Station (ISS) which was flown by Space Shuttle Endeavour. STS-123 was the 1J/A ISS assembly mission. The original launch target date was February 14, 2008, but after the delay of STS-122, the shuttle was launched on March 11, 2008. It was the twenty-fifth shuttle mission to visit the ISS, and delivered the first module of the Japanese laboratory, Japanese Experiment Module (Kibō), and the Canadian Special Purpose Dexterous Manipulator, (SPDM) Dextre robotics system to the station. The mission duration was 15 days and 18 hours, and it was the first mission to fully utilize the Station-to-Shuttle Power Transfer System (SSPTS), allowing space station power to augment the shuttle power systems. The mission set a record for a shuttle's longest stay at the ISS.

<span class="mw-page-title-main">STS-129</span> 2009 American crewed spaceflight to the ISS

STS-129 was a NASA Space Shuttle mission to the International Space Station (ISS). Atlantis was launched on November 16, 2009, at 14:28 EST, and landed at 09:44 EST on November 27, 2009, on runway 33 at the Kennedy Space Center's Shuttle Landing Facility. It was also the last Shuttle mission of the 2000s.

<span class="mw-page-title-main">Integrated Truss Structure</span> Part of the International Space Station; sequence of connected trusses

The Integrated Truss Structure (ITS) of the International Space Station (ISS) consists of a linear arranged sequence of connected trusses on which various unpressurized components are mounted such as logistics carriers, radiators, solar arrays, and other equipment. It supplies the ISS with a bus architecture. It is approximately 110 meters long and is made from aluminium and stainless steel.

The Space Test Program (STP) is the primary provider of spaceflight for the United States Department of Defense (DoD) space science and technology community. STP is managed by a group within the Advanced Systems and Development Directorate, a directorate of the Space and Missile Systems Center of the United States Space Force. STP provides spaceflight via the International Space Station (ISS), piggybacks, secondary payloads and dedicated launch services.

<span class="mw-page-title-main">Materials International Space Station Experiment</span> NASA science observatories on the orbital research platform

The Materials International Space Station Experiment (MISSE) is a series of experiments mounted externally on the International Space Station (ISS) that investigates the effects of long-term exposure of materials to the harsh space environment.

<span class="mw-page-title-main">STS-134</span> 2011 American crewed spaceflight to the ISS and final flight of Space Shuttle Endeavour

STS-134 was the penultimate mission of NASA's Space Shuttle program and the 25th and last spaceflight of Space ShuttleEndeavour. This flight delivered the Alpha Magnetic Spectrometer and an ExPRESS Logistics Carrier to the International Space Station. Mark Kelly served as the mission commander. STS-134 was expected to be the final Space Shuttle mission if STS-135 did not receive funding from Congress. However, in February 2011, NASA stated that STS-135 would fly "regardless" of the funding situation. STS-135, flown by Atlantis, took advantage of the processing for STS-335, the Launch on Need mission that would have been necessary if the STS-134 crew became stranded in orbit.

<span class="mw-page-title-main">Kounotori 2</span> 2011 Japanese resupply spaceflight to the ISS

Kounotori 2, also known as HTV-2, was launched in January 2011 and was the second flight of the Japanese H-II Transfer Vehicle to resupply the International Space Station (ISS). It was launched by the H-IIB Launch Vehicle No. 2 manufactured by Mitsubishi Heavy Industries (MHI) and JAXA. After the supplies were unloaded, Kounotori 2 was loaded with waste material from ISS, including used experiment equipment and used clothes. Kounotori 2 was then unberthed and separated from the ISS and burned up upon reentering the atmosphere on 30 March 2011.

<span class="mw-page-title-main">US Orbital Segment</span> US components of the International Space Station

The US Orbital Segment (USOS) is the name given to the components of the International Space Station (ISS) constructed and operated by the United States National Aeronautics and Space Administration (NASA), European Space Agency (ESA), Canadian Space Agency (CSA) and Japan Aerospace Exploration Agency (JAXA). The segment consists of eleven pressurized components and various external elements, almost all of which were delivered by the Space Shuttle.

<i>Columbus</i> External Payload Facility<i></i> Part of the Columbus module on the International Space Station

The Columbus External Payload Facility (Columbus-EPF) is a component of the Columbus module on the International Space Station. It consists of two identical L-shaped consoles attached to the starboard cone of Columbus in the zenith (top) and nadir (bottom) positions, each supporting two platforms for external payloads or payload facilities. Four external payloads can be operated at the same time.

<span class="mw-page-title-main">Orbital replacement unit</span>

Orbital replacement units (ORUs) are key elements of the International Space Station that can be readily replaced when the unit either passes its design life or fails. ORUs are parts of the main systems and subsystems of the external elements of the ISS, none are intended to be installed inside the pressurised modules. Examples of ORUs are: pumps, storage tanks, controller boxes, antennas, and battery units. Such units are replaced either by astronauts during EVA or by the Dextre (SPDM) robotic arm. All are stored on the three external stowage platforms (ESPs) or the four ExPRESS Logistics Carriers (ELCs) mounted on the Integrated Truss Structure (ITS).

<span class="mw-page-title-main">Robotic Refueling Mission</span>

The Robotic Refueling Mission (RRM) is a NASA technology demonstration mission with equipment launches in both 2011 and 2013 to increase the technological maturity of in-space rocket propellant transfer technology by testing a wide variety of potential propellant transfer hardware, of both new and existing satellite designs.

<span class="mw-page-title-main">SpaceX CRS-14</span> 2018 American resupply spaceflight to the ISS

SpaceX CRS-14, also known as SpX-14, was a Commercial Resupply Service mission to the International Space Station launched on 2 April 2018. The mission was contracted by NASA and was flown by SpaceX. This mission reused the Falcon 9 first stage booster previously flown on CRS-12 and the Dragon capsule flown on CRS-8.

<span class="mw-page-title-main">Cygnus NG-16</span> 2021 American resupply spaceflight to the ISS

Cygnus NG-16, previously known as Cygnus OA-16, was the sixteenth flight of the Northrop Grumman robotic resupply spacecraft Cygnus and its fifteenth flight to the International Space Station (ISS) under the Commercial Resupply Services (CRS-2) contract with NASA. The mission was launched on 10 August 2021 at 22:01:05 UTC, for a (planned) 90-day mission at the ISS. This was the fifth launch of Cygnus under the CRS-2 contract.

References

  1. Johnson Space Center (2006). EXPRESS Logistics Carrier (ELC) Development Specification (Revision B ed.). International Space Station Program. SSP 52055.
  2. NASA.gov
  3. "Goddard SFC ELCs Description". Archived from the original on 2017-06-12. Retrieved 2011-06-24.
  4. "MISSE-7". Archived from the original on 2008-12-10.
  5. "ISS External Payloads and ORUs". docs.google.com. Retrieved 2024-04-03.
  6. 1 2 3 "EVA Checklist: STS-129 Flight Supplement" (PDF). Archived from the original (PDF) on 2011-11-29. Retrieved 2011-07-03.
  7. "AWE". Gunter's Space Page. Retrieved 2023-12-22.
  8. "Lightning Imaging Sensor Relocated on the International Space Station" . Retrieved 14 May 2023.
  9. Team, Robert O. Green and the EMIT. "Destination | Mission". EMIT. Retrieved 2022-07-30.
  10. "ISS Daily Summary Report – 03/06/15". ISS On-Orbit Status Report. 6 March 2015. Retrieved 30 March 2018.
  11. "STS-134 press kit cover print file 3-31-11" (PDF). Archived from the original (PDF) on 2018-12-26. Retrieved 2013-03-27.
  12. "ISS On-Orbit Status Report - 6/03/2022". NASA. 3 June 2022. Retrieved 14 May 2023.
  13. "SCAN Testbed". 27 September 2023.
  14. "SCaN Testbed". Spaceflightsystems.grc.nasa.gov. 2013-03-13. Archived from the original on 2012-01-11. Retrieved 2013-03-27.
  15. Archived April 17, 2011, at the Wayback Machine
  16. "Archived copy". Archived from the original on 2011-08-07. Retrieved 2011-07-22.{{cite web}}: CS1 maint: archived copy as title (link)
  17. "Robotics and Space Biology Today as Cosmonauts Look to Next Spacewalk – Space Station". blogs.nasa.gov. 13 May 2019. Retrieved 2019-05-14.
  18. "STP-H6". Gunter's Space Page. Retrieved 2022-07-30.
  19. Garcia, Mark (22 December 2023). "Robotic Arm Releases Cygnus from Station". NASA. Archived from the original on 22 December 2023. Retrieved 22 December 2023.
  20. 1 2 "EVA Checklist: STS-133 Flight Supplement" (PDF). Archived from the original (PDF) on 2010-11-06. Retrieved 2011-07-03.
  21. 1 2 "HYV-2 Presskit" (PDF).
  22. "NASA.gov" (PDF). Archived from the original (PDF) on 2012-01-11. Retrieved 2011-07-03.
General