FASTRAC

Last updated
FASTRAC
FASTRAC.jpg
NamesFASTRAC 1 ("Sara-Lily")
FASTRAC 2 ("Emma")
Mission typeTechnology demonstration
Amateur radio
Operator University of Texas at Austin
COSPAR ID 2010-062F & 2010-062M
SATCAT no. 37227 & 37380
Spacecraft properties
ManufacturerUniversity of Texas at Austin
Launch massTotal: 58 kg (127 lb) [1]
Start of mission
Launch date20 November 2010, 01:21 (2010-11-20UTC01:21)  UTC [2]
Rocket Minotaur IV Flight 3
Launch site Kodiak Launch Complex
Contractor Orbital Sciences
End of mission
DisposalDecommissioned [3]
Orbital parameters
Reference system Geocentric
Regime Low Earth
Perigee altitude 641 km
Apogee altitude 652 km
Inclination 72°
 

Formation Autonomy Spacecraft with Thrust, Relnav, Attitude and Crosslink (or FASTRAC) is a pair of nanosatellites (respectively named Sara-Lily and Emma) developed and built by students at The University of Texas at Austin. The project is part of a program sponsored by the Air Force Research Laboratory (AFRL), whose goal is to lead the development of affordable space technology. The FASTRAC mission will specifically investigate technologies that facilitate the operation of multiple satellites in formation. These enabling technologies include relative navigation, cross-link communications, attitude determination, and thrust. Due to the high cost of lifting mass into orbit, there is a strong initiative to miniaturize the overall weight of spacecraft. The utilization of formations of satellites, in place of large single satellites, reduces the risk of single point failure and allows for the use of low-cost hardware.

Contents

In January 2005, the University of Texas won the University Nanosat-3 Program, a grant-based competition that included 12 other participating universities. [4] As a winner, FASTRAC was given the opportunity to launch its satellites into space. The student-led team received $100,000 from AFRL for the competition portion of the project, and another $100,000 for the implementation phase. FASTRAC is the first student-developed satellite mission incorporating on-orbit real-time relative navigation, on-orbit real-time attitude determination using a single GPS antenna, and a micro-discharge plasma thruster.

FASTRAC launched on 19 November 2010 aboard a Minotaur IV rocket from the Kodiak Launch Complex in Kodiak, Alaska. [5] Separation of the satellites from each other and cross-link communication were successfully carried out. [6]

FASTRAC was developed under the US Air Force Research Laboratory University Nanosatellite Program, and was ranked number 32 in the Space Experiments Review Board's list of prioritised spacecraft experiments in 2006. The spacecraft were expected to demonstrate Global Positioning System relative navigation and micro-charge thruster performance.

Operations

The main mission sequence is composed of six distinct phases: Launch, Launch Vehicle Separation, Initial Acquisition, GPS Onboard Relative Navigation, Onboard Single Antenna GPS Attitude Determination and Micro-discharge Plasma Thruster Operation, and Amateur Radio Operations. In the first phase, the two nanosatellites will be launched on the Department of Defense Space Test Program STP-S26 Mission from Kodiak Launch Complex (KLC) in Kodiak, Alaska. They will be transported to a 72 degree inclination circular low Earth orbit with an altitude of 650 km by a Minotaur IV rocket. Initially, the two nanosatellites will be in a stacked configuration. Once the rocket reaches the desired orbit, the satellites will be powered on by the launch vehicle before finally separating from the launch vehicle.

The third phase will begin once the two nanosatellites are ejected from the rocket. During this phase, there will be a 30-minute period where the satellites will go through a check out and initialization process. After this period, the satellites will begin transmitting beacon messages containing telemetry information that will help determine each satellite's status. During this phase the ground station will attempt to establish first contact with the satellites and perform a check out procedure to make sure all the subsystems on board are working correctly. It is expected that this checkout procedure will take several hours or even a few days depending on the duration of the communication passes with the ground station. Once the operators are satisfied with the status of the satellites, the satellites will be commanded from the ground to separate, finalizing the third phase of the mission.

When the satellites have successfully separated, the primary mission will begin, signaling the start of fourth phase. First, the satellites will autonomously establish a cross-link, or in other words, they will communicate with each other through UHF/VHF bands. The satellites will then exchange GPS data through this cross-link in order to calculate on-orbit real time relative navigation solutions. [7]

The fifth phase will activate a micro-discharge plasma thruster with a command from the ground that will autonomously operate when the thrusting vector is within a 15 degree cone of the anti-velocity vector. The thruster operation will be dependent on the on-orbit real-time single antenna GPS attitude determination solution. After this phase is over, a command from the ground station will disable the thruster on FASTRAC 1.

The final phase of the mission will start once the communication architecture of the satellites is reconfigured from the ground to work with the Automatic Packet Reporting System (APRS) network. This will make the satellites available to amateur radio users all around the world. Once the ground station loses all communication with the satellites, the mission will be terminated and the satellites will passively de-orbit, burning up in the atmosphere. The FASTRAC team has estimated that it will take six months to successfully achieve its mission objectives.

FASTRAC Concept of Operations MissionSequence.jpg
FASTRAC Concept of Operations

Subsystems

Structure

The structure of the FASTRAC satellites is a hexagonal iso-grid design that is composed of two titanium adapter plates, aluminum 6061 T-6 side panels, six hollow outer columns with inserts and six inner columns. The mass of the two nanosatellites is approximately 127 lbs with all of the components included.

Communication Architecture

The communications architecture is based on a system flown on PCSat2. The FASTRAC implementation consists of two receivers, one transmitter, a terminal node controller (TNC), a transmitter relay board, and a receiver relay board. On FASTRAC 1 “Sara Lily”, two R-100 VHF receivers and one TA-451 UHF transmitter from Hamtronics are used. On FASTRAC 2 “Emma”, two R-451 UHF receivers and one TA-51 VHF transmitter from Hamtronics are used. The TNC used is a KPC-9612+ from Kantronics. Both the transmitter and receiver relay boards were designed and manufactured in house.

Command & Data Handling

The command & data handling (C&DH) system is composed by four distributed AVRs which were developed by Santa Clara University. Each AVR has an Atmega 128 microcontroller and controls an individual subsystem on the satellite (i.e.: COM, EPS, GPS, and THR or IMU). The AVRs communicate with each other through the I2C bus.

GPS Subsystem

The GPS position and attitude determination system was designed and built by student researchers at The University of Texas' GPS Research Lab. The system utilizes GPS code measurements, as well as antenna signal-to-noise ratio (SNR) and 3-axis magnetometer measurements to provide estimates of position, velocity, and attitude. Each satellite will have redundant ORION GPS receivers, dual cross-strapped antennas with RF switching and splitting hardware.

Power System

The power system for each satellite is composed of eight solar panels, a VREG box, and a battery box. The battery box is made from black anodized aluminum and holds 10 Sanyo N4000-DRL D-cells provided to the team by AFRL. Both the solar panels and the VREG board were designed and made in-house. On each satellite, the VREG board distributes power from three VICOR VI-J00 voltage regulators, and also charges the batteries with the power collected from the solar panels.

Separation System

There are two separation systems for the FASTRAC satellites, both designed and manufactured by Planetary Systems Corporation (PSC), which will be used to separate the satellites in their stacked configuration from the Launch Vehicle and then to separate the two satellites while they are in orbit. The PSC Lightband Separation System is composed of two spring-loaded rings and a motorized release mechanism.

Micro-Discharge Plasma Thruster

The micro-discharge plasma thruster was designed and built at UT-Austin. The thruster channels and superheats an inert gas through a micro-channel nozzle producing a micro-Newton level of thrust. It uses a custom made composite tank from CTD. The operation of the thruster will be automated by the spacecraft C&DH using the attitude measurements provided by the GPS attitude determination system. After enabling the operation of the thruster from the ground, it will be only be active when one of the two nozzles is within a 15 degree cone of the anti-velocity vector. The thruster subsystem is only present on FASTRAC 1 "Sara Lily".

Inertial Measurement Unit (IMU)

On FASTRAC 2 “Emma”, instead of using a thruster, an Inertial Measurement Unit (IMU) MASIMU01 from Micro Aerospace Solutions is used to measure the separation of the two satellites.

Amateur Radio Participation

The FASTRAC satellites transmit and receive data (GPS, Health, etc.) on amateur radio frequencies. All amateur radio operators are encouraged to downlink data from either satellite and upload the data to the radio operator section on the FASTRAC Website. [8]

Operation Frequencies

FASTRAC 1 "Sara Lily"FASTRAC 2 "Emma"
Downlink 437.345 MHz FM145.825 MHz FM
Beacon 437.345 MHz AX.25 1200 AFSK145.825 MHz AX.25 1200 AFSK
Uplink (1200 Baud)145.980 MHz FM435.025 MHz FM
Uplink (9600 Baud)145.825 MHz FM437.345 MHz FM

Related Research Articles

<span class="mw-page-title-main">Transit (satellite)</span> Satellite navigation system

The Transit system, also known as NAVSAT or NNSS, was the first satellite navigation system to be used operationally. The radio navigation system was primarily used by the U.S. Navy to provide accurate location information to its Polaris ballistic missile submarines, and it was also used as a navigation system by the Navy's surface ships, as well as for hydrographic survey and geodetic surveying. Transit provided continuous navigation satellite service from 1964, initially for Polaris submarines and later for civilian use as well. In the Project DAMP Program, the missile tracking ship USAS American Mariner also used data from the satellite for precise ship's location information prior to positioning its tracking radars.

<span class="mw-page-title-main">CubeSat</span> Miniature satellite in 10cm cube modules

A CubeSat is a class of miniaturized satellite based around a form factor consisting of 10 cm (3.9 in) cubes. CubeSats have a mass of no more than 2 kg (4.4 lb) per unit, and often use commercial off-the-shelf (COTS) components for their electronics and structure, some non for profit organizations such as KSF Space Foundation offering cheapest on shelf cubesat kit as well. CubeSats are put into orbit by deployers on the International Space Station, or launched as secondary payloads on a launch vehicle. As of August 2021, more than 1,600 CubeSats have been launched.

<span class="mw-page-title-main">DART (satellite)</span> NASA Autonomous Rendezvous demo 2005

DART, or Demonstration for Autonomous Rendezvous Technology, was a NASA spacecraft with the goal to develop and demonstrate an automated navigation and rendezvous capability. At the time of the DART mission, only the Roscosmos and JAXA had autonomous spacecraft navigation. Orbital Sciences Corporation (OSC) was the prime contractor for construction, launch and operation of the DART spacecraft with a project cost of US$110 million (2005). The contract was awarded in June 2001 and the spacecraft was launched on 15 April 2005. The mission ended prematurely, very shortly after an anomalous slow-velocity collision with its target spacecraft, having completed less than half of the original mission autonomous rendezvous objectives.

The design of spacecraft covers a broad area, including the design of both robotic spacecraft, and spacecraft for human spaceflight.

<span class="mw-page-title-main">International Cospas-Sarsat Programme</span> International satellite-aided search and rescue initiative

The International Cospas-Sarsat Programme is a satellite-aided search and rescue (SAR) initiative. It is organized as a treaty-based, nonprofit, intergovernmental, humanitarian cooperative of 45 nations and agencies. It is dedicated to detecting and locating emergency locator radio beacons activated by persons, aircraft or vessels in distress, and forwarding this alert information to authorities that can take action for rescue.

<span class="mw-page-title-main">TacSat-2</span> US military satellite

TacSat-2 is the first in a series of U.S. military experimental technology and communication satellites.TacSat-2 (also known as JWS-D1 was an experimental satellite built by the USAF's Air Force Research Laboratory with an operational life expected to be not more than one year as part of the "Advanced Concept Technology Demonstration" program.

The Space Test Program (STP) is the primary provider of spaceflight for the United States Department of Defense (DoD) space science and technology community. STP is managed by a group within the Advanced Systems and Development Directorate, a directorate of the Space and Missile Systems Center of the United States Space Force. STP provides spaceflight via the International Space Station (ISS), piggybacks, secondary payloads and dedicated launch services.

Astrionics is the science and technology of the development and application of electronic systems, subsystems, and components used in spacecraft. The electronic systems on-board a spacecraft are embedded systems and include attitude determination and control, communications, command and telemetry, and computer systems. Sensors refers to the electronic components on board a spacecraft.

The Canadian Advanced Nanospace eXperiment (CanX) program is a Canadian CubeSat nanosatellite program operated by the University of Toronto Institute for Aerospace Studies, Space Flight Laboratory (UTIAS/SFL). The program's objectives are to involve graduate students in the process of spaceflight development, and to provide low-cost access to space for scientific research and the testing of nanoscale devices. The CanX projects include CanX-1, CanX-2, the BRIght Target Explorer (BRITE), and CanX-4&5.

The Cornell University Satellite (CUSat) is a nanosatellite developed by Cornell University that launched on 29 September 2013. It used a new algorithm called Carrier-phase Differential GPS (CDGPS) to calibrate global positioning systems to an accuracy of 3 millimeters. This technology can allow multiple spacecraft to travel in close proximity.

SNAP-1 is a British nanosatellite in low Earth orbit. The satellite was built at the Surrey Space Centre by Surrey Satellite Technology Ltd (SSTL) and members of the University of Surrey. It was launched on 28 June 2000 on board a Kosmos-3M rocket from the Plesetsk Cosmodrome in northern Russia. It shared the launch with a Russian Nadezhda search and relay spacecraft and the Chinese Tsinghua-1 microsatellite.

The University Nanosat Program is a satellite design and fabrication competition for universities. It is jointly administered by the Air Force Office of Scientific Research (AFOSR), the Air Force Research Laboratory (AFRL), the American Institute of Aeronautics and Astronautics (AIAA), the Space Development and Test Wing and the AFRL Space Vehicles Directorate's Spacecraft Technology division. NASA's Goddard Space Flight Center was involved from the program inception through Nanosat-3.

DRAGONSat

DRAGONSat is a pair of nanosatellites that will be demonstrating autonomous rendezvous and docking (ARD) in low Earth orbit (LEO) for NASA. It will be gathering flight data with a global positioning system (GPS) receiver strictly designed for space applications to gather flight data in the space environment. ARD is the capability of two independent spacecraft to rendezvous in orbit and dock without crew intervention. One DRAGONSat was built by the University of Texas and the other one was built by Texas A and M University, the Space Shuttle Payload Launcher (SSPL), These satellite projects will rendezvous and dock with each other in space without the benefit of human intervention.

SSETI Express was the first spacecraft to be designed and built by European students and was launched by the European Space Agency. SSETI Express is a small spacecraft, similar in size and shape to a washing machine. On board the student-built spacecraft were three CubeSat picosatellites, extremely small satellites weighing around one kg each. These were deployed one hour and forty minutes after launch. Twenty-one university groups, working from locations spread across Europe and with very different cultural backgrounds, worked together via the internet to jointly create the satellite. The expected lifetime of the mission was planned to be 2 months. SSETI Express encountered an unusually fast mission development: less than 18 months from kick-off in January 2004 to flight-readiness.

<span class="mw-page-title-main">Radio Aurora Explorer</span>

Radio Aurora Explorer (RAX) is the first National Science Foundation sponsored CubeSat mission. The RAX mission is a joint effort between SRI International in Menlo Park, California and the University of Michigan in Ann Arbor, Michigan. The chief scientist at SRI International, Dr. Hasan Bahcivan, led his team at SRI to develop the payload while the chief engineer, Dr. James Cutler, led a team of students to develop the satellite bus in the Michigan Exploration Laboratory. There are currently two satellites in the RAX mission.

Jugnu, is an Indian technology demonstration and remote sensing CubeSat satellite which was operated by the Indian Institute of Technology Kanpur. Built under the guidance of Dr. N. S. Vyas, it is a nanosatellite which will be used to provide data for agriculture and disaster monitoring. It is a 3-kilogram (6.6 lb) spacecraft, which measures 34 centimetres (13 in) in length by 10 centimetres (3.9 in) in height and width. Its development programme cost around 25 million rupee. It has a design life of one year.

Attitude control is the process of controlling the orientation of an aerospace vehicle with respect to an inertial frame of reference or another entity such as the celestial sphere, certain fields, and nearby objects, etc.

USA-221, also known as FalconSat-5, is an American military minisatellite, which was launched in 2010. The fifth FalconSat spacecraft to be launched, it carries four technology development and ionospheric research experiments. The satellite was constructed and is operated by the United States Air Force Academy.

<span class="mw-page-title-main">RAX-2</span>

RAX-2 is a CubeSat satellite built as a collaboration between SRI International and students at the University of Michigan College of Engineering. It is the second spacecraft in the RAX mission. The RAX-1 mission ended after approximately two months of operation due to a gradual degradation of the solar panels that ultimately resulted in a loss of power. RAX team members applied the lessons learned from RAX-1 to the design of a second flight unit, RAX-2, which performs the same mission concept of RAX-1 with improved bus performance and additional operational modes. Science measurements are enhanced through interactive experiments with high power ionospheric heaters where FAI will be generated on demand.

<span class="mw-page-title-main">TSUBAME (satellite)</span>

TSUBAME was a microsatellite developed by the Tokyo Institute of Technology and Tokyo University of Science from a student design concept in 2004. The satellite was designed to demonstrate new technologies for rapid attitude control, observing gamma ray bursts, and earth observation. The name, TSUBAME, means swift in Japanese and was chosen both because of the experimental attitude control system and to invoke another gamma ray observatory, the Swift Gamma-Ray Burst Mission, which launched shortly after TSUBAME's first design concept was published in 2004.

References

  1. "FASTRAC: Press Kit 2010" (PDF). University of Texas at Austin. Archived from the original (PDF) on 14 March 2012.
  2. Muñoz, Sebastián; et al. (2011). The FASTRAC Mission: Operations Summary and Preliminary Experiment Results. 25th AIAA/USU Conference on Small Satellites. 9 August 2011. Logan, Utah. See also https://digitalcommons.usu.edu/smallsat/2011/all2011/24/.
  3. "Past Missions". Texas Spacecraft Laboratory, University of Texas at Austin. Retrieved 24 October 2019.
  4. "FASTRAC Project Overview". University of Texas at Austin. 2010-11-02. Archived from the original on 2010-11-14. Retrieved 2010-11-08.
  5. Muñoz, Sebastian (2010-11-02). "FASTRAC News Archive". University of Texas at Austin. Archived from the original on 2010-11-14. Retrieved 2010-11-08.
  6. First student-developed mission in which satellites orbit and communicate led by UT students, University of Texas at Austin press release, 24 March 2011.
  7. Smith, A., Muñoz, S., Hagen, E., Johnson, G.P., & Lightsey, E.G. (2008, August) "The FASTRAC Satellites: Software Implementation and Testing" (PDF). Archived from the original (PDF) on 2010-12-26. 22nd Annual USU/AIAA Small Satellite Conference, Logan, Utah, SSC08-XII-4.
  8. "FASTRAC Media Kit" (PDF). Archived from the original (PDF) on 2011-07-20. Retrieved 2010-11-08.