Flavin-containing monooxygenase 3

Last updated

FMO3
Identifiers
Aliases FMO3 , trimethylamine monooxygenase, flavin-containing monooxygenase 3, Dimethylaniline monooxygenase [N-oxide-forming] 3, FMOII, TMAU, dJ127D3.1, flavin containing monooxygenase 3, flavin containing dimethylaniline monoxygenase 3
External IDs OMIM: 136132 MGI: 1100496 HomoloGene: 128199 GeneCards: FMO3
EC number 1.14.13.148
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_001002294
NM_006894
NM_001319173
NM_001319174

NM_008030

RefSeq (protein)

NP_001002294
NP_001306102
NP_001306103
NP_008825

NP_032056

Location (UCSC) Chr 1: 171.09 – 171.12 Mb Chr 1: 162.78 – 162.81 Mb
PubMed search [3] [4]
Wikidata
View/Edit Human View/Edit Mouse

Flavin-containing monooxygenase 3 (FMO3), also known as dimethylaniline monooxygenase [N-oxide-forming] 3 and trimethylamine monooxygenase, is a flavoprotein enzyme (EC 1.14.13.148) that in humans is encoded by the FMO3 gene. [5] [6] [7] [8] This enzyme catalyzes the following chemical reaction, among others: [8]

Contents

trimethylamine + NADPH + H+ + O2 trimethylamine N-oxide + NADP+ + H2O

FMO3 is the main flavin-containing monooxygenase isoenzyme that is expressed in the liver of adult humans. [8] [9] [10] The human FMO3 enzyme catalyzes several types of reactions, including: the N-oxygenation of primary, secondary, and tertiary amines; [9] [11] the S-oxygenation of nucleophilic sulfur-containing compounds; [9] [11] and the 6-methylhydroxylation of the anti-cancer agent dimethylxanthenone acetic acid (DMXAA). [9] [12]

FMO3 is the primary enzyme in humans which catalyzes the N-oxidation of trimethylamine into trimethylamine N-oxide; [8] [10] FMO1 also does this, but to a much lesser extent than FMO3. [13] [14] Genetic deficiencies of the FMO3 enzyme cause primary trimethylaminuria, also known as "fish odor syndrome". [8] [15] FMO3 is also involved in the metabolism of many xenobiotics (i.e., exogenous compounds which are not normally present in the body), [9] [10] such as the oxidative deamination of amphetamine. [9] [16] [17]

Ligands

List of human FMO3 substrates, inhibitors, inducers, and activators
FMO3 substrates FMO3 inhibitors FMO3 inducers FMO3 activators
Endogenous biomolecules
Notable exogenous xenobiotics
A indicates moderate to complete selectivity for FMO3 relative to other FMO isoenzymes.

Cancer

The FMO3 gene has been observed progressively downregulated in human papillomavirus-positive neoplastic keratinocytes derived from uterine cervical preneoplastic lesions at different levels of malignancy. [20] For this reason, FMO3 is likely to be associated with tumorigenesis and may be a potential prognostic marker for progression of uterine cervical preneoplastic lesions. [20]

See also

Related Research Articles

<span class="mw-page-title-main">Phenethylamine</span> Organic compound, a stimulant in humans

Phenethylamine (PEA) is an organic compound, natural monoamine alkaloid, and trace amine, which acts as a central nervous system stimulant in humans. In the brain, phenethylamine regulates monoamine neurotransmission by binding to trace amine-associated receptor 1 (TAAR1) and inhibiting vesicular monoamine transporter 2 (VMAT2) in monoamine neurons. To a lesser extent, it also acts as a neurotransmitter in the human central nervous system. In mammals, phenethylamine is produced from the amino acid L-phenylalanine by the enzyme aromatic L-amino acid decarboxylase via enzymatic decarboxylation. In addition to its presence in mammals, phenethylamine is found in many other organisms and foods, such as chocolate, especially after microbial fermentation.

<span class="mw-page-title-main">Tyramine</span> Chemical compound

Tyramine, also known under several other names, is a naturally occurring trace amine derived from the amino acid tyrosine. Tyramine acts as a catecholamine releasing agent. Notably, it is unable to cross the blood-brain barrier, resulting in only non-psychoactive peripheral sympathomimetic effects following ingestion. A hypertensive crisis can result, however, from ingestion of tyramine-rich foods in conjunction with the use of monoamine oxidase inhibitors (MAOIs).

<span class="mw-page-title-main">Phenylpropanolamine</span> Sympathomimetic agent

Phenylpropanolamine (PPA) is a sympathomimetic agent which is used as a decongestant and appetite suppressant. It was commonly used in prescription and over-the-counter cough and cold preparations. In veterinary medicine, it is used to control urinary incontinence in dogs.

<span class="mw-page-title-main">Flavin adenine dinucleotide</span> Redox-active coenzyme

In biochemistry, flavin adenine dinucleotide (FAD) is a redox-active coenzyme associated with various proteins, which is involved with several enzymatic reactions in metabolism. A flavoprotein is a protein that contains a flavin group, which may be in the form of FAD or flavin mononucleotide (FMN). Many flavoproteins are known: components of the succinate dehydrogenase complex, α-ketoglutarate dehydrogenase, and a component of the pyruvate dehydrogenase complex.

<span class="mw-page-title-main">Trimethylaminuria</span> Medical condition

Trimethylaminuria (TMAU), also known as fish odor syndrome or fish malodor syndrome, is a rare metabolic disorder that causes a defect in the normal production of an enzyme named flavin-containing monooxygenase 3 (FMO3). When FMO3 is not working correctly or if not enough enzyme is produced, the body loses the ability to properly convert the fishy-smelling chemical trimethylamine (TMA) from precursor compounds in food digestion into trimethylamine oxide (TMAO), through a process called N-oxidation.

<span class="mw-page-title-main">Phenylacetone</span> Chemical compound

Phenylacetone, also known as phenyl-2-propanone, is an organic compound with the chemical formula C6H5CH2COCH3. It is a colorless oil that is soluble in organic solvents. It is a mono-substituted benzene derivative, consisting of an acetone attached to a phenyl group. As such, its systematic IUPAC name is 1-phenyl-2-propanone.

<span class="mw-page-title-main">4-Hydroxyamphetamine</span> Group of stereoisomers

4-Hydroxyamphetamine (4HA), also known as hydroxyamfetamine, hydroxyamphetamine, oxamphetamine, norpholedrine, para-hydroxyamphetamine, and α-methyltyramine, is a drug that stimulates the sympathetic nervous system.

Trimethylamine <i>N</i>-oxide Chemical compound

Trimethylamine N-oxide (TMAO) is an organic compound with the formula (CH3)3NO. It is in the class of amine oxides. Although the anhydrous compound is known, trimethylamine N-oxide is usually encountered as the dihydrate. Both the anhydrous and hydrated materials are white, water-soluble solids.

Trimethylamine N-oxide reductase is a microbial enzyme that can reduce trimethylamine N-oxide (TMAO) into trimethylamine (TMA), as part of the electron transport chain. The enzyme has been purified from E. coli and the photosynthetic bacteria Roseobacter denitrificans.

<span class="mw-page-title-main">Dopamine beta-hydroxylase</span> Mammalian protein found in Homo sapiens

Dopamine beta-hydroxylase (DBH), also known as dopamine beta-monooxygenase, is an enzyme that in humans is encoded by the DBH gene. Dopamine beta-hydroxylase catalyzes the conversion of dopamine to norepinephrine.

<span class="mw-page-title-main">Kynurenine 3-monooxygenase</span> Enzyme

In enzymology, a kynurenine 3-monooxygenase (EC 1.14.13.9) is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">Flavin containing monooxygenase 1</span> Protein-coding gene in the species Homo sapiens

Dimethylaniline monooxygenase [N-oxide-forming] 1 is an enzyme that in humans is encoded by the FMO1 gene.

<span class="mw-page-title-main">FMO5</span> Protein-coding gene in the species Homo sapiens

Dimethylaniline monooxygenase [N-oxide-forming] 5 is an enzyme that in humans is encoded by the FMO5 gene.

<span class="mw-page-title-main">FMO2</span> Protein-coding gene in the species Homo sapiens

Dimethylaniline monooxygenase [N-oxide-forming] 2 is an enzyme that in humans is encoded by the FMO2 gene.

<span class="mw-page-title-main">FMO4</span> Protein-coding gene in the species Homo sapiens

Dimethylaniline monooxygenase [N-oxide-forming] 4 is an enzyme that in humans is encoded by the FMO4 gene.

Cyclohexanone monooxygenase (EC 1.14.13.22, cyclohexanone 1,2-monooxygenase, cyclohexanone oxygenase, cyclohexanone:NADPH:oxygen oxidoreductase (6-hydroxylating, 1,2-lactonizing)) is an enzyme with systematic name cyclohexanone,NADPH:oxygen oxidoreductase (lactone-forming). This enzyme catalyses the following chemical reaction

<i>p</i>-Hydroxynorephedrine Chemical compound

p-Hydroxynorephedrine (PHN), or 4-hydroxynorephedrine, is the para-hydroxy analog of norephedrine and an active sympathomimetic metabolite of amphetamine in humans. When it occurs as a metabolite of amphetamine, it is produced from both p-hydroxyamphetamine and norephedrine.

<span class="mw-page-title-main">4-Hydroxyphenylacetone</span> Chemical compound

4-Hydroxyphenylacetone is the para-hydroxy analog of phenylacetone, an inactive metabolite of amphetamine in humans. When it occurs as a metabolite of amphetamine, it is produced directly from the inactive metabolite phenylacetone.

<span class="mw-page-title-main">Flavin-containing monooxygenase</span> Class of enzymes

The flavin-containing monooxygenase (FMO) protein family specializes in the oxidation of xeno-substrates in order to facilitate the excretion of these compounds from living organisms. These enzymes can oxidize a wide array of heteroatoms, particularly soft nucleophiles, such as amines, sulfides, and phosphites. This reaction requires an oxygen, an NADPH cofactor, and an FAD prosthetic group. FMOs share several structural features, such as a NADPH binding domain, FAD binding domain, and a conserved arginine residue present in the active site. Recently, FMO enzymes have received a great deal of attention from the pharmaceutical industry both as a drug target for various diseases and as a means to metabolize pro-drug compounds into active pharmaceuticals. These monooxygenases are often misclassified because they share activity profiles similar to those of cytochrome P450 (CYP450), which is the major contributor to oxidative xenobiotic metabolism. However, a key difference between the two enzymes lies in how they proceed to oxidize their respective substrates; CYP enzymes make use of an oxygenated heme prosthetic group, while the FMO family utilizes FAD to oxidize its substrates.

<span class="mw-page-title-main">7α-Thiomethylspironolactone sulfoxide</span> Chemical compound

7α-Thiomethylspironolactone sulfoxide is a metabolite of spironolactone, an antimineralocorticoid and antiandrogen medication. 7α-TMS sulfoxide is specifically formed from 7α-thiomethylspironolactone (7α-TMS).

References

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000007933 - Ensembl, May 2017
  2. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000026691 - Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. Shephard EA, Dolphin CT, Fox MF, Povey S, Smith R, Phillips IR (June 1993). "Localization of genes encoding three distinct flavin-containing monooxygenases to human chromosome 1q". Genomics. 16 (1): 85–9. doi:10.1006/geno.1993.1144. PMID   8486388.
  6. Dolphin CT, Riley JH, Smith RL, Shephard EA, Phillips IR (February 1998). "Structural organization of the human flavin-containing monooxygenase 3 gene (FMO3), the favored candidate for fish-odor syndrome, determined directly from genomic DNA". Genomics. 46 (2): 260–7. doi:10.1006/geno.1997.5031. PMID   9417913.
  7. "Entrez Gene: FMO3 flavin containing monooxygenase 3".
  8. 1 2 3 4 5 6 7 8 9 10 11 12 13 Trimethylamine monooxygenase (Homo sapiens) | BRENDA. Technische Universität Braunschweig. July 2016. Retrieved 18 September 2016. trimethylaminuria (fish-odor syndrome) is associated with defective hepatic N-oxidation of dietary-derived trimethylamine catalyzed by flavin-containing monooxygenase ... FMO3 deficiency results in trimethylaminuria or the fish-like odour syndrome ... isozyme FMO3 regulates the conversion of N,N,N-trimethylamine into its N-oxide and hence controls the release of volatile N,N,N-trimethylamine from the individual
  9. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Krueger SK, Williams DE (June 2005). "Mammalian flavin-containing monooxygenases: structure/function, genetic polymorphisms and role in drug metabolism". Pharmacol. Ther. 106 (3): 357–387. doi: 10.1016/j.pharmthera.2005.01.001 . PMC   1828602 . PMID   15922018. A second precaution with respect to predicting FMO enzyme substrate specificity is that factors other than size and charge must play a role, but these parameters are not well understood. An example is the high selectivity observed with human FMO3, compared to the other FMO enzymes, in the N-oxygenation of the important constitutive substrate trimethylamine (Lang et al., 1998). ... The most efficient human FMO in phenethylamine N-oxygenation is FMO3, the major FMO present in adult human liver; the Km is between 90 and 200 μM (Lin & Cashman, 1997b). ... Of particular significance for this review is that individuals homozygous for certain FMO3 allelic variants (e.g., null variants) also demonstrate impaired metabolism toward other FMO substrates including ranitidine, nicotine, thio-benzamide, and phenothiazine derivatives (Table 4; Cashman et al., 1995, 2000; Kang et al., 2000; Cashman, 2002; Park et al., 2002; Lattard et al., 2003a, 2003b). ... The metabolic activation of ethionamide by the bacterial FMO is the same as the mammalian FMO activation of thiobenzamide to produce hepatotoxic sulfinic and sulfinic acid metabolites. Not surprisingly, Dr. Ortiz de Montellano's laboratory and our own have found ethionamide to be a substrate for human FMO1, FMO2, and FMO3 (unpublished observations).
    Table 5: N-containing drugs and xenobiotics oxygenated by FMO
    Table 6: S-containing drugs and xenobiotics oxygenated by FMO
    Table 7: FMO activities not involving S- or N-oxygenation
  10. 1 2 3 4 5 6 7 8 9 Hisamuddin IM, Yang VW (June 2007). "Genetic polymorphisms of human flavin-containing monooxygenase 3: implications for drug metabolism and clinical perspectives". Pharmacogenomics. 8 (6): 635–643. doi:10.2217/14622416.8.6.635. PMC   2213907 . PMID   17559352. Other drug substrates have been used for both in vitro and in vivo analyses. ... FMO3 is the most abundantly expressed FMO in the adult human liver [12]. Its structure and function and the implications of its polymorphisms have been widely studied [8,12,13]. This enzyme has a wide substrate specificity, including the dietary-derived tertiary amines trimethylamine, tyramine and nicotine; commonly used drugs including cimetidine, ranitidine, clozapine, methimazole, itopride, ketoconazole, tamoxifen and sulindac sulfide; and agrichemicals, such as organophosphates and carbamates [14–22].
  11. 1 2 3 4 5 Cashman JR (September 2000). "Human flavin-containing monooxygenase: substrate specificity and role in drug metabolism". Curr. Drug Metab. 1 (2): 181–191. doi:10.2174/1389200003339135. PMID   11465082. Human FMO3 N-oxygenates primary, secondary and tertiary amines whereas human FMO1 is only highly efficient at N-oxygenating tertiary amines. Both human FMO1 and FMO3 S-oxygenate a number of nucleophilic sulfur-containing substrates and in some cases, does so with great stereoselectivity. ... For amines with smaller aromatic substituents such as phenethylamines, often these compounds are efficiently N-oxygenated by human FMO3. ... (S)-Nicotine N-1'-oxide formation can also be used as a highly stereoselective probe of human FMO3 function for adult humans that smoke cigarettes. Finally, cimetidine S-oxygenation or ranitidine N-oxidation can also be used as a functional probe of human FMO3. With the recent observation of human FMO3 genetic polymorphism and poor metabolism phenotype in certain human populations, variant human FMO3 may contribute to adverse drug reactions or exaggerated clinical response to certain medications.
  12. 1 2 Zhou S, Kestell P, Paxton JW (July 2002). "6-methylhydroxylation of the anti-cancer agent 5,6-dimethylxanthenone-4-acetic acid (DMXAA) by flavin-containing monooxygenase 3". Eur J Drug Metab Pharmacokinet. 27 (3): 179–183. doi:10.1007/bf03190455. PMID   12365199. S2CID   21583717. Only FMO3 formed 6-OH-MXAA at a similar rate to that in cDNA-expressed cytochromes P-450 (CYP)1A2. The results of this study indicate that human FMO3 has the capacity to form 6-OH-MXAA, but plays a lesser important role for this reaction than CYP1A2 that has been demonstrated to catalyse 6-OH-MXAA formation.
  13. Tang WH, Hazen SL (October 2014). "The contributory role of gut microbiota in cardiovascular disease". J. Clin. Invest. 124 (10): 4204–4211. doi:10.1172/JCI72331. PMC   4215189 . PMID   25271725. In recent studies each of the FMO family members were cloned and expressed, to determine which possessed synthetic capacity to use TMA as a substrate to generate TMAO. FMO1, FMO2, and FMO3 were all capable of forming TMAO, though the specific activity of FMO3 was at least 10-fold higher than that the other FMOs (54). Further, FMO3 overexpression in mice significantly increased plasma TMAO levels, while silencing FMO3 decreased TMAO levels (54). In both humans and mice, hepatic FMO3 expression was observed to be reduced in males compared with females (25, 54) and could be induced by dietary bile acids through a mechanism that involves FXR (54).
  14. Bennett BJ, de Aguiar Vallim TQ, Wang Z, Shih DM, Meng Y, Gregory J, Allayee H, Lee R, Graham M, Crooke R, Edwards PA, Hazen SL, Lusis AJ (2013). "Trimethylamine-N-oxide, a metabolite associated with atherosclerosis, exhibits complex genetic and dietary regulation". Cell Metab. 17 (1): 49–60. doi:10.1016/j.cmet.2012.12.011. PMC   3771112 . PMID   23312283. Circulating trimethylamine-N-oxide (TMAO) levels are strongly associated with atherosclerosis. We now examine genetic, dietary, and hormonal factors regulating TMAO levels. We demonstrate that two flavin mono-oxygenase family members, FMO1 and FMO3, oxidize trimethylamine (TMA), derived from gut flora metabolism of choline, to TMAO. Further, we show that FMO3 exhibits 10-fold higher specific activity than FMO1.
  15. Dolphin CT, Janmohamed A, Smith RL, Shephard EA, Phillips IR (1997). "Missense mutation in flavin-containing mono-oxygenase 3 gene, FMO3, underlies fish-odour syndrome". Nat. Genet. 17 (4): 491–4. doi:10.1038/ng1297-491. PMID   9398858. S2CID   24732203.
  16. Glennon RA (2013). "Phenylisopropylamine stimulants: amphetamine-related agents". In Lemke TL, Williams DA, Roche VF, Zito W (eds.). Foye's principles of medicinal chemistry (7th ed.). Philadelphia, USA: Wolters Kluwer Health/Lippincott Williams & Wilkins. pp. 646–648. ISBN   978-1-60913-345-0. The simplest unsubstituted phenylisopropylamine, 1-phenyl-2-aminopropane, or amphetamine, serves as a common structural template for hallucinogens and psychostimulants. Amphetamine produces central stimulant, anorectic, and sympathomimetic actions, and it is the prototype member of this class (39). ... The phase 1 metabolism of amphetamine analogs is catalyzed by two systems: cytochrome P450 and flavin monooxygenase.
  17. 1 2 3 Cashman JR, Xiong YN, Xu L, Janowsky A (March 1999). "N-oxygenation of amphetamine and methamphetamine by the human flavin-containing monooxygenase (form 3): role in bioactivation and detoxication". J. Pharmacol. Exp. Ther. 288 (3): 1251–1260. PMID   10027866.
  18. 1 2 3 4 5 Robinson-Cohen C, Newitt R, Shen DD, Rettie AE, Kestenbaum BR, Himmelfarb J, Yeung CK (August 2016). "Association of FMO3 Variants and Trimethylamine N-Oxide Concentration, Disease Progression, and Mortality in CKD Patients". PLOS ONE. 11 (8): e0161074. Bibcode:2016PLoSO..1161074R. doi: 10.1371/journal.pone.0161074 . PMC   4981377 . PMID   27513517. TMAO is generated from trimethylamine (TMA) via metabolism by hepatic flavin-containing monooxygenase isoform 3 (FMO3). ... FMO3 catalyzes the oxidation of catecholamine or catecholamine-releasing vasopressors, including tyramine, phenylethylamine, adrenaline, and noradrenaline [32, 33].
  19. In vitro and in vivo inhibition of human flavin-containing monooxygenase form 3 (FMO3) in the presence of dietary indoles. September 1999. Retrieved 15 April 2024. After a 3-week run-in period, 5 volunteers continued on a glucosinolate-free diet for 3 weeks (control group), and 5 others consumed 300 g of cooked Brussels sprouts per day (sprouts group). Human flavin-containing monooxygenase activity was measured by determining the levels of urinary trimethylamine and trimethylamine N-oxide. In the control group similar trimethylamine to trimethylamine N-oxide ratios were observed, while in the sprouts group the trimethylamine to trimethylamine N-oxide ratios were increased 2.6- to 3.2-fold, and thus flavin-containing monooxygenase functional activity was decreased significantly.
  20. 1 2 Rotondo JC, Bosi S, Bassi C, Ferracin M, Lanza G, Gafà R, Magri E, Selvatici R, Torresani S, Marci R, Garutti P, Negrini M, Tognon M, Martini F (April 2015). "Gene expression changes in progression of cervical neoplasia revealed by microarray analysis of cervical neoplastic keratinocytes". J Cell Physiol. 230 (4): 802–812. doi:10.1002/jcp.24808. hdl: 11392/2066612 . PMID   25205602. S2CID   24986454.

Further reading