Geranylgeranyl pyrophosphate

Last updated
Geranylgeranyl pyrophosphate
Geranylgeranyl pyrophosphate skeletal.svg
Names
Preferred IUPAC name
(2E,6E,10E)-3,7,11,15-Tetramethylhexadeca-2,6,10,14-tetraen-1-yl trihydrogen diphosphate
Other names
geranylgeranyl diphosphate
trans-geranylgeranyl diphosphate
Identifiers
3D model (JSmol)
ChEBI
ChemSpider
MeSH geranylgeranyl+pyrophosphate
PubChem CID
UNII
  • InChI=1S/C20H36O7P2/c1-17(2)9-6-10-18(3)11-7-12-19(4)13-8-14-20(5)15-16-26-29(24,25)27-28(21,22)23/h9,11,13,15H,6-8,10,12,14,16H2,1-5H3,(H,24,25)(H2,21,22,23)/b18-11+,19-13+,20-15+ Yes check.svgY
    Key: OINNEUNVOZHBOX-QIRCYJPOSA-N Yes check.svgY
  • InChI=1/C20H36O7P2/c1-17(2)9-6-10-18(3)11-7-12-19(4)13-8-14-20(5)15-16-26-29(24,25)27-28(21,22)23/h9,11,13,15H,6-8,10,12,14,16H2,1-5H3,(H,24,25)(H2,21,22,23)/b18-11+,19-13+,20-15+
    Key: OINNEUNVOZHBOX-QIRCYJPOBR
  • O=P(O)(O)OP(=O)(O)OC/C=C(/CC\C=C(/C)CC\C=C(/C)CC\C=C(/C)C)C
Properties
C20H36O7P2
Molar mass 450.449 g·mol−1
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
Yes check.svgY  verify  (what is  Yes check.svgYX mark.svgN ?)

Geranylgeranyl pyrophosphate is an intermediate in the biosynthesis of diterpenes and diterpenoids. [1] It is also the precursor to carotenoids, gibberellins, tocopherols, and chlorophylls.

It is also a precursor to geranylgeranylated proteins, which is its primary use in human cells. [2]

It is formed from farnesyl pyrophosphate by the addition of an isoprene unit from isopentenyl pyrophosphate.

In Drosophila , geranylgeranyl pyrophosphate is synthesised by HMG-CoA encoded by the Columbus gene. Geranylgeranyl pyrophosphate is utilised as a chemoattractant for migrating germ cells that have traversed the midgut epithelia. The attractant signal is produced at the gonadal precursors, directing the germ cells to these sites, where they will differentiate into eggs and spermatozoa (sperm).

Related Research Articles

The terpenoids, also known as isoprenoids, are a class of naturally occurring organic chemicals derived from the 5-carbon compound isoprene and its derivatives called terpenes, diterpenes, etc. While sometimes used interchangeably with "terpenes", terpenoids contain additional functional groups, usually containing oxygen. When combined with the hydrocarbon terpenes, terpenoids comprise about 80,000 compounds. They are the largest class of plant secondary metabolites, representing about 60% of known natural products. Many terpenoids have substantial pharmacological bioactivity and are therefore of interest to medicinal chemists.

<span class="mw-page-title-main">Terpene</span> Class of oily organic compounds found in plants

Terpenes are a class of natural products consisting of compounds with the formula (C5H8)n for n ≥ 2. Comprising more than 30,000 compounds, these unsaturated hydrocarbons are produced predominantly by plants, particularly conifers. Terpenes are further classified by the number of carbons: monoterpenes (C10), sesquiterpenes (C15), diterpenes (C20), as examples. The terpene alpha-pinene, is a major component of the common solvent, turpentine.

<span class="mw-page-title-main">Bilobalide</span> Chemical compound

Bilobalide is a biologically active terpenic trilactone present in Ginkgo biloba.

<span class="mw-page-title-main">Prenylation</span> Addition of hydrophobic moieties to proteins or other biomolecules

Prenylation is the addition of hydrophobic molecules to a protein or a biomolecule. It is usually assumed that prenyl groups (3-methylbut-2-en-1-yl) facilitate attachment to cell membranes, similar to lipid anchors like the GPI anchor, though direct evidence of this has not been observed. Prenyl groups have been shown to be important for protein–protein binding through specialized prenyl-binding domains.

Diterpenes are a class of terpenes composed of four isoprene units, often with the molecular formula C20H32. They are biosynthesized by plants, animals and fungi via the HMG-CoA reductase pathway, with geranylgeranyl pyrophosphate being a primary intermediate. Diterpenes form the basis for biologically important compounds such as retinol, retinal, and phytol. They are known to be antimicrobial and anti-inflammatory.

<span class="mw-page-title-main">Isopentenyl pyrophosphate</span> Chemical compound

Isopentenyl pyrophosphate is an isoprenoid precursor. IPP is an intermediate in the classical, HMG-CoA reductase pathway and in the non-mevalonate MEP pathway of isoprenoid precursor biosynthesis. Isoprenoid precursors such as IPP, and its isomer DMAPP, are used by organisms in the biosynthesis of terpenes and terpenoids.

<span class="mw-page-title-main">Geranyl pyrophosphate</span> Chemical compound

Geranyl pyrophosphate (GPP), also known as geranyl diphosphate (GDP), is the pyrophosphate ester of the terpenoid geraniol. Its salts are colorless. It is a precursor to many natural products.

Farnesyl pyrophosphate (FPP), also known as farnesyl diphosphate (FDP), is an intermediate in the biosynthesis of terpenes and terpenoids such as sterols and carotenoids. It is also used in the synthesis of CoQ, as well as dehydrodolichol diphosphate.

<span class="mw-page-title-main">Sesquiterpene</span> Class of terpenes

Sesquiterpenes are a class of terpenes that consist of three isoprene units and often have the molecular formula C15H24. Like monoterpenes, sesquiterpenes may be cyclic or contain rings, including many unique combinations. Biochemical modifications such as oxidation or rearrangement produce the related sesquiterpenoids.

<span class="mw-page-title-main">Triterpene</span> Class of chemical compounds

Triterpenes are a class of terpenes composed of six isoprene units with the molecular formula C30H48; they may also be thought of as consisting of three terpene units. Animals, plants and fungi all produce triterpenes, including squalene, the precursor to all steroids.

<span class="mw-page-title-main">Steviol</span> Chemical compound

Steviol is a diterpene first isolated from the plant Stevia rebaudiana in 1931. Its chemical structure was not fully elucidated until 1960.

<span class="mw-page-title-main">Andrographolide</span> Chemical compound

Andrographolide is a labdane diterpenoid that has been isolated from the stem and leaves of Andrographis paniculata. Andrographolide is an extremely bitter substance.

The enzyme taxadiene synthase catalyzes the chemical reaction

In enzymology, a farnesyltranstransferase is an enzyme that catalyzes the chemical reaction

In enzymology, a geranyltranstransferase is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">GGPS1</span> Mammalian protein found in Homo sapiens

Geranylgeranyl pyrophosphate synthase is an enzyme that in humans is encoded by the GGPS1 gene.

<span class="mw-page-title-main">Levopimaric acid</span> Chemical compound

Levopimaric acid is an abietane-type of diterpene resin acid. It is a major constituent of pine oleoresin with the chemical formula of C20H30O2. In general, the abietene types of diterpene resin acid have various biological activities, such as antibacterial, cardiovascular and antioxidant. Levopimaric acid accounts for about 18 to 25% of pine oleoresin. The production of oleoresin by conifer species is an important component of the defense response against insect attack and fungal pathogen infection.

<span class="mw-page-title-main">Bipinnatin J</span> Chemical compound

Bipinnatin J is a diterpene isolated from the bipinnate sea plume Antillogorgia bipinnata, a sea fan found in the eastern Caribbean Sea. It is one of the structurally simplest of the furanocembrenolides, and is speculated to be a biosynthetic precursor to a wide array cembrenolides along with the dehydroxylated analog, rubifolide.

Sclareol cyclase (EC 3.1.7.4, geranylgeranyl pyrophosphate:sclareol cyclase, geranylgeranyl pyrophosphate-sclareol cyclase, GGPP:sclareol cyclase) is an enzyme with systematic name geranylgeranyl-diphosphate diphosphohydrolase (sclareol-forming). This enzyme catalyses the following chemical reaction

<span class="mw-page-title-main">Taxadiene</span> Chemical compound

Taxadiene (taxa-4,11-diene) is a diterpene. Taxadiene is the first committed intermediate in the synthesis of taxol. Six hydroxylation reactions, and a few others, are needed to convert taxadiene to baccatin III.

References

  1. Davis, Edward M.; Croteau, Rodney (2000). "Cyclization enzymes in the biosynthesis of monoterpenes, sesquiterpenes, and diterpenes". Topics in Current Chemistry. 209: 53–95. doi:10.1007/3-540-48146-X_2. ISBN   978-3-540-66573-1.
  2. Wiemer, AJ; Wiemer, DF; Hohl, RJ (December 2011). "Geranylgeranyl diphosphate synthase: an emerging therapeutic target". Clinical Pharmacology and Therapeutics. 90 (6): 804–12. doi:10.1038/clpt.2011.215. PMID   22048229. S2CID   27913789.