Global Change Observation Mission

Last updated
An artist's rendering of GCOM-W1. GCOM-W1 satellite.png
An artist's rendering of GCOM-W1.

GCOM (Global Change Observation Mission), is a JAXA project of long-term observation of Earth environmental changes. As a part of Japan's contributions to GEOSS (Global Earth Observation System of Systems), GCOM will be continued for 10 to 15 years with observation and utilization of global geophysical data such as precipitation, snow, water vapor, aerosol, for climate change prediction, water management, and food security. On May 18, 2012, the first satellite "GCOM-W" (nickname "Shizuku") was launched. On December 23, 2017, the second satellite "GCOM-C1" (nickname "Shikisai") was launched.

Contents

GCOM-W

Launch of GCOM-W aboard a H-IIA rocket. H-IIA F21 launching SHIZUKU.jpg
Launch of GCOM-W aboard a H-IIA rocket.

GCOM-W (Global Change Observation Mission – Water; nickname "Shizuku") is the first in the GCOM series. Its mission is to observe the water cycle. The satellite carries the AMSR2 (Advanced Microwave Scanning Radiometer 2) instrument, the successor to the AMSR-E carried by Aqua. This microwave radiometer will observe precipitation, water vapor, wind velocity above the ocean, sea water temperature, water levels on land areas, and snow depths. GCOM-W was approved in 2006, and development of the satellite started in 2007 with a mission budget of 20 billion Yen (US$200 Million). Mass of the satellite is 1990 kg. [1] [2] Planned lifespan is 5 years. Polar orbit (altitude 700 km) with equator crossing local time on the ascending orbit is 13:30PM +/- 00:15.

GCOM-W was launched on May 17, 2012, via a H-IIA rocket, and it flies in a Sun-synchronous orbit as part of the "A-train" satellite constellation. It successfully began collecting data on July 4, 2012. Its planned lifespan of 5 years means that the satellite is set to operate until 2017, although JAXA hopes that it will last longer. [3]

GCOM-C1

GCOM-C1 (Global Change Observation Mission – Climate; nickname "Shikisai"), the first satellite in the GCOM-C series, will monitor global climate change by observing the surface and atmosphere of Earth over the course of 5 years. Through use of its SGLI (Second generation GLobal Imager) optical instrument, it will collect data related to the carbon cycle and radiation budget, such as measurements of clouds, aerosols, ocean color, vegetation, and snow and ice. From its Sun-synchronous orbit (altitude 798 km), SGLI will collect a complete picture of Earth every 2–3 days with a resolution of 250-1000m, across the UV, visible, and infrared spectrums. Mass of the satellite is 2020 kg. [4] Equator crossing local time on the descending orbit is 10:30AM +/- 00:15.

GCOM-C was launched on December 23, 2017, via a H-IIA rocket.

Sensors

AMSR2

AMSR2 (Advanced Microwave Scanning Radiometer 2) is an improved version of AMSR (aperture 2.0 m) on ADEOS II and AMSR-E (aperture 1.6 m) on NASA's Aqua satellite. By rotating a disc antenna (diameter 2.0 m) in 1.5 s period, it scans the Earth surface along an arc of 1450 km length. Reliability is better than AMSR and AMSR-E. Planned lifetime has been extended from 3 years to 5 years.

A new microwave band, namely 7.3 GHz, has been added. The 7.3 GHz band is for duplication and calibration of 6.925 GHz band. AMSR2 continues the legacy of AMSR-E, which also observed as part of the A-Train constellation.

AMSR2 observation frequency
parameter / frequency (GHz)6.925/
7.3
10.6518.723.836.589.0comments
column vapor    
column precipitable water    
precipitation  
sea surface temperature   
sea surface wind speed   
sea ice density 89 GHz is only for cloudless area
snowpack  
soil moisture 

Note: ◎ means the most important band for that purpose.

SGLI

SGLI (Second-generation Global Imager) is a multi-band optical radiometer and the successor of GLI sensor on ADEOS-II. It consists of two sensors: SGLI-VNR (an electronic scan) and SGLI-IRS (a mechanical scan). SGLI-VNR succeeds the technology of MESSR on MOS-1, OPS/VNIR on JERS-1, AVNIR on ADEOS, and AVNIR-2 on ALOS.

The number of channels of SGLI is 19, which is much less than GLI (36 channels). This is because SGLI carefully selected the essential bands for observations.

The swath size is 1150 km for SGLI-VNR and 1400 km for SGLI-IRS. Although a little reduction from GLI (all channels were mechanical scan with 1400 km swath), it has more bands with high-resolution (250 m). Polarimetry function has been added to SGLI-VNR, which helps detection of size of aerosol particles, enabling detection of source of the aerosols.

The lesson of GLI sensor's too big and too complicated structure, SGLI is divided to two simple systems, and the number of channels have been minimized to really essential bands, aiming at better reliability and survivability.

SGLI observation channels
instrumentschannelcentral wavelengthbandwidthresolutiontarget
SGLI-
VNR
non-
polarization
VN1380 nm10.6 nm250 mterrestrial aerosol, atmospheric correction, ocean color, snow and ice
VN2412 nm10.3 nmvegetation, terrestrial aerosol, atmospheric correction, oceanic aerosol, photosynthetic active radiation, snow and ice
VN3443 nm10.1 nmvegetation, oceanic aerosol, atmospheric correction, photosynthetic active radiation, ocean color, snow and ice
VN4490 nm10.3 nmocean color (chlorophyll, suspended sediments)
VN5530 nm19.1 nmphotosynthetic active radiation, ocean color (chlorophyll)
VN6565 nm19.8 nmocean color (chlorophyll, suspended sediments, colored dissolved organic matters)
VN7673.5 nm22 nmvegetation, terrestrial aerosol, atmospheric correction, ocean color
VN8673.5 nm21.9 nm
VN9763 nm11.4 nm1000 mliquid cloud geometric thickness
VN10868.5 nm20.9 nm250 mvegetation, terrestrial aerosol, atmospheric correction, ocean color, snow and ice
VN11868.5 nm20.8 nm
polarizationP1673.5 nm20.6 nm1000 mvegetation, terrestrial aerosol, atmospheric correction, ocean color
P2868.5 nm20.3 nmvegetation, terrestrial aerosol, atmospheric correction, ocean color, snow and ice
SGLI-
IRS
short wave infrared
(SWIR)
SW11050 nm21.1 nm1000 mliquid cloud optical thickness, particle size
SW21380 nm20.1 nmdetection of clouds over snow and ice
SW31630 nm195 nm250 m
SW42210 nm50.4 nm1000 mliquid cloud optical thickness, particle size
thermal infrared
(TIR)
T110.8 μm0.756 μm250 msurface temperature of land, ocean, snow & ice. Fire detection, vegetation water stress
T212.0 μm0.759 μm

See also

Related Research Articles

<span class="mw-page-title-main">Envisat</span> ESA Earth observation satellite (2002–2012)

Envisat is a large Earth-observing satellite which has been inactive since 2012. It is still in orbit and considered space debris. Operated by the European Space Agency (ESA), it was the world's largest civilian Earth observation satellite.

<span class="mw-page-title-main">Microwave radiometer</span> Tool measuring EM radiation at 0.3–300-GHz frequency

A microwave radiometer (MWR) is a radiometer that measures energy emitted at one millimeter-to-metre wavelengths (frequencies of 0.3–300 GHz) known as microwaves. Microwave radiometers are very sensitive receivers designed to measure thermally-emitted electromagnetic radiation. They are usually equipped with multiple receiving channels to derive the characteristic emission spectrum of planetary atmospheres, surfaces or extraterrestrial objects. Microwave radiometers are utilized in a variety of environmental and engineering applications, including remote sensing, weather forecasting, climate monitoring, radio astronomy and radio propagation studies.

The Earth Observing System (EOS) is a program of NASA comprising a series of artificial satellite missions and scientific instruments in Earth orbit designed for long-term global observations of the land surface, biosphere, atmosphere, and oceans. Since the early 1970s, NASA has been developing its Earth Observing System, launching a series of Landsat satellites in the decade. Some of the first included passive microwave imaging in 1972 through the Nimbus 5 satellite. Following the launch of various satellite missions, the conception of the program began in the late 1980s and expanded rapidly through the 1990s. Since the inception of the program, it has continued to develop, including; land, sea, radiation and atmosphere. Collected in a system known as EOSDIS, NASA uses this data in order to study the progression and changes in the biosphere of Earth. The main focus of this data collection surrounds climatic science. The program is the centrepiece of NASA's Earth Science Enterprise.

<span class="mw-page-title-main">Upper Atmosphere Research Satellite</span> NASA-operated orbital observatory (1991-2011)

The Upper Atmosphere Research Satellite (UARS) was a NASA-operated orbital observatory whose mission was to study the Earth's atmosphere, particularly the protective ozone layer. The 5,900-kilogram (13,000 lb) satellite was deployed from Space Shuttle Discovery during the STS-48 mission on 15 September 1991. It entered Earth orbit at an operational altitude of 600 kilometers (370 mi), with an orbital inclination of 57 degrees.

<span class="mw-page-title-main">JAXA</span> Japans national air and space agency

The Japan Aerospace Exploration Agency (JAXA) is the Japanese national air and space agency. Through the merger of three previously independent organizations, JAXA was formed on 1 October 2003. JAXA is responsible for research, technology development and launch of satellites into orbit, and is involved in many more advanced missions such as asteroid exploration and possible human exploration of the Moon. Its motto is One JAXA and its corporate slogan is Explore to Realize.

<span class="mw-page-title-main">Aqua (satellite)</span> NASA scientific research satellite

Aqua is a NASA scientific research satellite in orbit around the Earth, studying the precipitation, evaporation, and cycling of water. It is the second major component of the Earth Observing System (EOS) preceded by Terra and followed by Aura.

The Special Sensor Microwave/Imager (SSM/I) is a seven-channel, four-frequency, linearly polarized passive microwave radiometer system. It is flown on board the United States Air Force Defense Meteorological Satellite Program (DMSP) Block 5D-2 satellites. The instrument measures surface/atmospheric microwave brightness temperatures (TBs) at 19.35, 22.235, 37.0 and 85.5 GHz. The four frequencies are sampled in both horizontal and vertical polarizations, except the 22 GHz which is sampled in the vertical only.

<span class="mw-page-title-main">Tropical Rainfall Measuring Mission</span> Joint space mission between NASA and JAXA

The Tropical Rainfall Measuring Mission (TRMM) was a joint space mission between NASA and JAXA designed to monitor and study tropical rainfall. The term refers to both the mission itself and the satellite that the mission used to collect data. TRMM was part of NASA's Mission to Planet Earth, a long-term, coordinated research effort to study the Earth as a global system. The satellite was launched on 27 November 1997 from the Tanegashima Space Center in Tanegashima, Japan. TRMM operated for 17 years, including several mission extensions, before being decommissioned on 15 April 2015. TRMM re-entered Earth's atmosphere on 16 June 2015.

<span class="mw-page-title-main">Atmospheric chemistry observational databases</span> Aspect of atmospheric sciences

Over the last two centuries many environmental chemical observations have been made from a variety of ground-based, airborne, and orbital platforms and deposited in databases. Many of these databases are publicly available. All of the instruments mentioned in this article give online public access to their data. These observations are critical in developing our understanding of the Earth's atmosphere and issues such as climate change, ozone depletion and air quality. Some of the external links provide repositories of many of these datasets in one place. For example, the Cambridge Atmospheric Chemical Database, is a large database in a uniform ASCII format. Each observation is augmented with the meteorological conditions such as the temperature, potential temperature, geopotential height, and equivalent PV latitude.

<span class="mw-page-title-main">Sentinel-3</span> Earth observation satellite series

Sentinel-3 is an Earth observation heavy satellite series developed by the European Space Agency as part of the Copernicus Programme. It currently consists of 2 satellites: Sentinel-3A and Sentinel-3B. After initial commissioning, each satellite was handed over to EUMETSAT for the routine operations phase of the mission. Two recurrent satellites— Sentinel-3C and Sentinel-3D— will follow in approximately 2025 and 2028 respectively to ensure continuity of the Sentinel-3 mission.

<span class="mw-page-title-main">Megha-Tropiques</span> Indian weather satellite

Megha-Tropiques was a satellite mission to study the water cycle in the tropical atmosphere in the context of climate change. A collaborative effort between Indian Space Research Organisation (ISRO) and French Centre National d’Etudes Spatiales (CNES), Megha-Tropiques was successfully deployed into orbit by a PSLV rocket in October 2011.

Marine Observation Satellite-1 (MOS-1), also known as Momo-1, was Japan's first Earth observation satellite. It was launched on 19 February 1987 on a N-II rocket from Tanegashima Space Center and was operated by the National Space Development Agency of Japan (NASDA). It is in a polar orbit at roughly 900 km altitude, but was decommissioned on 29 November 1995.

<span class="mw-page-title-main">NOAA-7</span>

NOAA-7, known as NOAA-C before launch, was an American operational weather satellite for use in the National Operational Environmental Satellite System (NOESS) and for the support of the Global Atmospheric Research Program (GARP) during 1978-1984. The satellite design provided an economical and stable Sun-synchronous platform for advanced operational instruments to measure the atmosphere of Earth, its surface and cloud cover, and the near-space environment. An earlier launch, NOAA-B, was scheduled to become NOAA-7, however NOAA-B failed to reach its required orbit.

NOAA B was an American operational weather satellite for use in the National Operational Environmental Satellite System (NOESS) and for the support of the Global Atmospheric Research Program (GARP) during 1978-1984. The satellite design provided an economical and stable Sun-synchronous platform for advanced operational instruments to measure the atmosphere of Earth, its surface and cloud cover, and the near-space environment.

<span class="mw-page-title-main">Earth Observation Center</span> Observation facility of JAXA

The Earth Observation Center is a Japanese Aerospace Exploration Agency (JAXA) aeronautical research facility located in Hatoyama, Saitama, Japan. It utilizes remote sensing technologies such as satellites to study Earth's environment from outer space. The research done by this center has a substantial impact on the study of the Earth's environmental phenomena, such as global warming.

<span class="mw-page-title-main">ADEOS II</span> Japanese Earth observation satellite

ADEOS II was an Earth observation satellite (EOS) launched by NASDA, with contributions from NASA and CNES, in December 2002. and it was the successor to the 1996 mission ADEOS I. The mission ended in October 2003 after the satellite's solar panels failed.

<span class="mw-page-title-main">ADEOS I</span> Japanese Earth observation satellite

ADEOS I was an Earth observation satellite launched by NASDA in 1996. The mission's Japanese name, Midori means "green". The mission ended in July 1997 after the satellite sustained structural damage to the solar panel. Its successor, ADEOS II, was launched in 2002. Like the first mission, it ended after less than a year, also following solar panel malfunctions.

Super Low Altitude Test Satellite (SLATS) or Tsubame was a JAXA satellite intended to demonstrate operations in very low Earth orbit, using ion engines to counteract aerodynamic drag from the Earth's atmosphere which is substantial at such lower orbital altitudes. It was launched on 23 December 2017, and decommissioned on 1 October 2019.

NOAA-10, known as NOAA-G before launch, was an American weather satellite operated by the National Oceanic and Atmospheric Administration (NOAA) for use in the National Environmental Satellite Data and Information Service (NESDIS). It was the third of the Advanced TIROS-N series of satellites. The satellite design provided an economical and stable Sun-synchronous platform for advanced operational instruments to measure the atmosphere of Earth, its surface and cloud cover, and the near-space environment.

<span class="mw-page-title-main">Eni G. Njoku</span> American scientist

Eni G. Njoku is a Nigerian-American scientist specializing in microwave remote sensing. He worked at the Jet Propulsion Laboratory (JPL), California Institute of Technology, where he was responsible for developing techniques for sea surface temperature and soil moisture remote sensing using microwave radiometers. He produced the first microwave-derived sea surface temperature maps from space, and developed the first application of deployable mesh antennas for satellite Earth observation. From 2008-2013, he served as project scientist of NASA's first soil moisture mission, the Soil Moisture Active Passive (SMAP) mission, launched in 2015.

References

  1. GCOM-W1 at NSSDC
  2. GCOM-W at JAXA
  3. "SHIZUKU Observation Data Acquired by AMSR2". JAXA. Retrieved 2 July 2014.
  4. "JAXA: Global Change Observation Mission – Climate (GCOM-C)" . Retrieved 2 July 2014.