Gravity darkening

Last updated
Achernar is a rapidly spinning star flattened into an oblate spheroid hotter and brighter at the poles. Eso0316c.tif
Achernar is a rapidly spinning star flattened into an oblate spheroid hotter and brighter at the poles.

Gravity darkening, also referred to as gravity brightening, is an astronomical phenomenon where the poles of a star are brighter than the equator, due to rapid rotation and oblate shape. When a star is oblate, it has a larger radius at its equator than it does at its poles. As a result, the poles have a higher surface gravity, and thus higher temperature and pressure is needed to maintain hydrostatic equilibrium. Thus, the poles are "gravity brightened", and the equator "gravity darkened". [1]

The star becomes oblate (and hence gravity darkening occurs) because the centrifugal force resulting from rotation creates additional outward pressure on the star. The centrifugal force is expressed mathematically as

where is mass (in this case of a small volume element of the star), is the angular velocity, and is the radial distance from the axis of rotation. In the case of a star, the value of is largest at the equator and smallest at the poles. This means that equatorial regions of a star have a greater centrifugal force than the pole. The centrifugal force pushes mass away from the axis of rotation, resulting in less overall pressure on the gas in the equatorial regions of the star. This causes the gas in this region to become less dense, and cooler.

Von Zeipel's theorem states that the radiation from a star is proportional to the local effective gravity, that is to the gravity reduced by any centrifugal force at that location on the star's surface. Then the effective temperature is proportional to the fourth root of the effective gravity.

Related Research Articles

<span class="mw-page-title-main">Coriolis force</span> Force on objects moving within a reference frame that rotates with respect to an inertial frame

In physics, the Coriolis force is an inertial or fictitious force that acts on objects in motion within a frame of reference that rotates with respect to an inertial frame. In a reference frame with clockwise rotation, the force acts to the left of the motion of the object. In one with anticlockwise rotation, the force acts to the right. Deflection of an object due to the Coriolis force is called the Coriolis effect. Though recognized previously by others, the mathematical expression for the Coriolis force appeared in an 1835 paper by French scientist Gaspard-Gustave de Coriolis, in connection with the theory of water wheels. Early in the 20th century, the term Coriolis force began to be used in connection with meteorology.

<span class="mw-page-title-main">Hydrostatic equilibrium</span> State of balance between external forces on a fluid and internal pressure gradient

In fluid mechanics, hydrostatic equilibrium is the condition of a fluid or plastic solid at rest, which occurs when external forces, such as gravity, are balanced by a pressure-gradient force. In the planetary physics of Earth, the pressure-gradient force prevents gravity from collapsing the planetary atmosphere into a thin, dense shell, whereas gravity prevents the pressure-gradient force from diffusing the atmosphere into outer space.

<span class="mw-page-title-main">Spheroid</span> Surface formed by rotating an ellipse

A spheroid, also known as an ellipsoid of revolution or rotational ellipsoid, is a quadric surface obtained by rotating an ellipse about one of its principal axes; in other words, an ellipsoid with two equal semi-diameters. A spheroid has circular symmetry.

An equatorial bulge is a difference between the equatorial and polar diameters of a planet, due to the centrifugal force exerted by the rotation about the body's axis. A rotating body tends to form an oblate spheroid rather than a sphere.

<span class="mw-page-title-main">Baroclinity</span> Measure of misalignment between the gradients of pressure and density in a fluid

In fluid dynamics, the baroclinity of a stratified fluid is a measure of how misaligned the gradient of pressure is from the gradient of density in a fluid. In meteorology a baroclinic flow is one in which the density depends on both temperature and pressure. A simpler case, barotropic flow, allows for density dependence only on pressure, so that the curl of the pressure-gradient force vanishes.

<span class="mw-page-title-main">Dynamo theory</span> Mechanism by which a celestial body generates a magnetic field

In physics, the dynamo theory proposes a mechanism by which a celestial body such as Earth or a star generates a magnetic field. The dynamo theory describes the process through which a rotating, convecting, and electrically conducting fluid can maintain a magnetic field over astronomical time scales. A dynamo is thought to be the source of the Earth's magnetic field and the magnetic fields of Mercury and the Jovian planets.

<span class="mw-page-title-main">Alpha Ophiuchi</span> Star in the constellation Ophiuchus

Alpha Ophiuchi, also named Rasalhague, is a binary star and the brightest star in the constellation of Ophiuchus.

<span class="mw-page-title-main">Surface gravity</span> Standard surface gravity

The surface gravity, g, of an astronomical object is the gravitational acceleration experienced at its surface at the equator, including the effects of rotation. The surface gravity may be thought of as the acceleration due to gravity experienced by a hypothetical test particle which is very close to the object's surface and which, in order not to disturb the system, has negligible mass. For objects where the surface is deep in the atmosphere and the radius not known, the surface gravity is given at the 1 bar pressure level in the atmosphere.

The Eötvös effect is the change in measured Earth's gravity caused by the change in centrifugal acceleration resulting from eastbound or westbound velocity. When moving eastbound, the object's angular velocity is increased, and thus the centrifugal force also increases, causing a perceived reduction in gravitational force.

<span class="mw-page-title-main">Gravity of Earth</span>

The gravity of Earth, denoted by g, is the net acceleration that is imparted to objects due to the combined effect of gravitation and the centrifugal force . It is a vector quantity, whose direction coincides with a plumb bob and strength or magnitude is given by the norm .

<span class="mw-page-title-main">Omega Carinae</span> Star in the constellation Carina

Omega Carinae, Latinized from ω Carinae, is a star in the constellation Carina. With a declination greater than 70 degrees south of the celestial equator, it is the most southerly of the bright stars of Carina, and it is part of a southern asterism known as the Diamond Cross. This star has an apparent visual magnitude of 3.3 and is located at a distance of about 342 light-years from Earth.

<span class="mw-page-title-main">Inertial wave</span>

Inertial waves, also known as inertial oscillations, are a type of mechanical wave possible in rotating fluids. Unlike surface gravity waves commonly seen at the beach or in the bathtub, inertial waves flow through the interior of the fluid, not at the surface. Like any other kind of wave, an inertial wave is caused by a restoring force and characterized by its wavelength and frequency. Because the restoring force for inertial waves is the Coriolis force, their wavelengths and frequencies are related in a peculiar way. Inertial waves are transverse. Most commonly they are observed in atmospheres, oceans, lakes, and laboratory experiments. Rossby waves, geostrophic currents, and geostrophic winds are examples of inertial waves. Inertial waves are also likely to exist in the molten core of the rotating Earth.

<span class="mw-page-title-main">Stellar rotation</span> Angular motion of a star about its axis

Stellar rotation is the angular motion of a star about its axis. The rate of rotation can be measured from the spectrum of the star, or by timing the movements of active features on the surface.

<span class="mw-page-title-main">Free surface</span> Surface of a fluid that is subject to zero parallel shear stress

In physics, a free surface is the surface of a fluid that is subject to zero parallel shear stress, such as the interface between two homogeneous fluids. An example of two such homogeneous fluids would be a body of water (liquid) and the air in the Earth's atmosphere. Unlike liquids, gases cannot form a free surface on their own. Fluidized/liquified solids, including slurries, granular materials, and powders may form a free surface.

<span class="mw-page-title-main">Centrifugal force</span> Type of inertial force

In Newtonian mechanics, the centrifugal force is an inertial force that appears to act on all objects when viewed in a rotating frame of reference. It is directed away from an axis which is parallel to the axis of rotation and passing through the coordinate system's origin. If the axis of rotation passes through the coordinate system's origin, the centrifugal force is directed radially outwards from that axis. The magnitude of centrifugal force F on an object of mass m at the distance r from the origin of a frame of reference rotating with angular velocity ω is:

Equatorial waves are oceanic and atmospheric waves trapped close to the equator, meaning that they decay rapidly away from the equator, but can propagate in the longitudinal and vertical directions. Wave trapping is the result of the Earth's rotation and its spherical shape which combine to cause the magnitude of the Coriolis force to increase rapidly away from the equator. Equatorial waves are present in both the tropical atmosphere and ocean and play an important role in the evolution of many climate phenomena such as El Niño. Many physical processes may excite equatorial waves including, in the case of the atmosphere, diabatic heat release associated with cloud formation, and in the case of the ocean, anomalous changes in the strength or direction of the trade winds.

The spinning drop method or rotating drop method is one of the methods used to measure interfacial tension. Measurements are carried out in a rotating horizontal tube which contains a dense fluid. A drop of a less dense liquid or a gas bubble is placed inside the fluid. Since the rotation of the horizontal tube creates a centrifugal force towards the tube walls, the liquid drop will start to deform into an elongated shape; this elongation stops when the interfacial tension and centrifugal forces are balanced. The surface tension between the two liquids can then be derived from the shape of the drop at this equilibrium point. A device used for such measurements is called a “spinning drop tensiometer”.

Nodal precession is the precession of the orbital plane of a satellite around the rotational axis of an astronomical body such as Earth. This precession is due to the non-spherical nature of a rotating body, which creates a non-uniform gravitational field. The following discussion relates to low Earth orbit of artificial satellites, which have no measurable effect on the motion of Earth. The nodal precession of more massive, natural satellites like the Moon is more complex.

Polflucht is a geophysical concept invoked in 1922 by Alfred Wegener to explain his ideas of continental drift.

Atmospheric circulation of a planet is largely specific to the planet in question and the study of atmospheric circulation of exoplanets is a nascent field as direct observations of exoplanet atmospheres are still quite sparse. However, by considering the fundamental principles of fluid dynamics and imposing various limiting assumptions, a theoretical understanding of atmospheric motions can be developed. This theoretical framework can also be applied to planets within the Solar System and compared against direct observations of these planets, which have been studied more extensively than exoplanets, to validate the theory and understand its limitations as well.

References

  1. Inglis-Arkell, Esther. "The Mysterious Phenomenon of "Gravity Darkening"". io9. Archived from the original on 1 July 2015. Retrieved 28 June 2015.