Gravity gradiometry

Last updated
Pendulums used in Mendenhall gravimeter apparatus, from 1897 scientific journal Mendenhall gravimeter pendulums.jpg
Pendulums used in Mendenhall gravimeter apparatus, from 1897 scientific journal

Gravity gradiometry is the study of variations (anomalies) in the Earth's gravity field via measurements of the spatial gradient of gravitational acceleration. The gravity gradient tensor is a 3x3 tensor representing the partial derivatives, along each coordinate axis, of each of the three components of the acceleration vector (), totaling 9 scalar quantities:

Contents

It has dimension of square reciprocal time, in units of s-2 (or mm-1s-2).

Gravity gradiometry is used by oil and mineral prospectors to measure the density of the subsurface, effectively by measuring the rate of change of gravitational acceleration due to underlying rock properties. From this information it is possible to build a picture of subsurface anomalies which can then be used to more accurately target oil, gas and mineral deposits. It is also used to image water column density, when locating submerged objects, or determining water depth (bathymetry). Physical scientists use gravimeters to determine the exact size and shape of the earth and they contribute to the gravity compensations applied to inertial navigation systems.

Gravity gradient

Gravity measurements are a reflection of the earth's gravitational attraction, its centripetal force, tidal accelerations due to the sun, moon, and planets, and other applied forces. Gravity gradiometers measure the spatial derivatives of the gravity vector. The most frequently used and intuitive component is the vertical gravity gradient, Gzz, which represents the rate of change of vertical gravity (gz) with height (z). It can be deduced by differencing the value of gravity at two points separated by a small vertical distance, l, and dividing by this distance.

The two gravity measurements are provided by accelerometers which are matched and aligned to a high level of accuracy.

Units

The unit of gravity gradient is the eotvos (abbreviated as E), which is equivalent to 10−9 s−2 (or 10−4 mGal/m). A person walking past at a distance of 2 metres would provide a gravity gradient signal approximately one E. Mountains can give signals of several hundred Eotvos.

Gravity gradient tensor

Full tensor gradiometers measure the rate of change of the gravity vector in all three perpendicular directions giving rise to a gravity gradient tensor (Fig 1).

Fig 1. Conventional gravity measures ONE component of the gravity field in the vertical direction Gz (LHS), Full tensor gravity gradiometry measures ALL components of the gravity field (RHS) Tensors-Gz---Gzz2.jpg
Fig 1. Conventional gravity measures ONE component of the gravity field in the vertical direction Gz (LHS), Full tensor gravity gradiometry measures ALL components of the gravity field (RHS)

Comparison to gravity

Being the derivatives of gravity, the spectral power of gravity gradient signals is pushed to higher frequencies. This generally makes the gravity gradient anomaly more localised to the source than the gravity anomaly. The table (below) and graph (Fig 2) compare the gz and Gzz responses from a point source.

Gravity (gz)Gravity gradient (Gzz)
Signal
Peak signal (r = 0)
Full width at half maximum
Wavelength (λ)
Fig 2. Vertical gravity and gravity gradient signals from a point source buried at 1 km depth Gravity-and-gravity-gradient-signals2.jpg
Fig 2. Vertical gravity and gravity gradient signals from a point source buried at 1 km depth

Conversely, gravity measurements have more signal power at low frequency therefore making them more sensitive to regional signals and deeper sources.

Dynamic survey environments (airborne and marine)

The derivative measurement sacrifices the overall energy in the signal, but significantly reduces the noise due to motional disturbance. On a moving platform, the acceleration disturbance measured by the two accelerometers is the same so that when forming the difference, it cancels in the gravity gradient measurement. This is the principal reason for deploying gradiometers in airborne and marine surveys where the acceleration levels are orders of magnitude greater than the signals of interest. The signal to noise ratio benefits most at high frequency (above 0.01 Hz), where the airborne acceleration noise is largest.

Applications

Gravity gradiometry has predominately been used to image subsurface geology to aid hydrocarbon and mineral exploration. Over 2.5 million line km has now been surveyed using the technique. [1] The surveys highlight gravity anomalies that can be related to geological features such as Salt diapirs, Fault systems, Reef structures, Kimberlite pipes, etc. Other applications include tunnel and bunker detection [2] and the recent GOCE mission that aims to improve the knowledge of ocean circulation.

Gravity gradiometers

Lockheed Martin gravity gradiometers

During the 1970s, as an executiv in the US Dept. of Defense, John Brett initiated the development of the gravity gradiometer to support the Trident 2 system. A committee was commissioned to seek commercial applications for the Full Tensor Gradient (FTG) system that was developed by Bell Aerospace (later acquired by Lockheed Martin) and was being deployed on US Navy Ohio-class Trident submarines designed to aid covert navigation. As the Cold War came to a close, the US Navy released the classified technology and opened the door for full commercialization of the technology. The existence of the gravity gradiometer was famously exposed in the film The Hunt for Red October released in 1990.

There are two types of Lockheed Martin gravity gradiometers currently in operation: the 3D Full Tensor Gravity Gradiometer (FTG; deployed in either a fixed wing aircraft or a ship) and the FALCON gradiometer (a partial tensor system with 8 accelerometers and deployed in a fixed wing aircraft or a helicopter). The 3D FTG system contains three gravity gradiometry instruments (GGIs), each consisting of two opposing pairs of accelerometers arranged on a spinning disc with measurement direction in the spin direction.

Other gravity gradiometers

Electrostatic gravity gradiometer
This is the gravity gradiometer deployed on the European Space Agency's GOCE mission. It is a three-axis diagonal gradiometer based on three pairs of electrostatic servo-controlled accelerometers.
ARKeX Exploration gravity gradiometer
An evolution of technology originally developed for European Space Agency, the Exploration Gravity Gradiometer (EGG), developed by ARKeX (a corporation that is now defunct), uses two key principles of superconductivity to deliver its performance: the Meissner effect, which provides levitation of the EGG proof masses and flux quantization, which gives the EGG its inherent stability. The EGG has been specifically designed for high dynamic survey environments.
Ribbon sensor gradiometer
The Gravitec gravity gradiometer sensor consists of a single sensing element (a ribbon) that responds to gravity gradient forces. It is designed for borehole applications.
UWA gravity gradiometer
The University of Western Australia (aka VK-1) Gravity Gradiometer is a superconducting instrument which uses an orthogonal quadrupole responder (OQR) design based on pairs of micro-flexure supported balance beams.
Gedex gravity gradiometer
The Gedex gravity gradiometer (AKA High-Definition Airborne Gravity Gradiometer, HD-AGG) is also a superconducting OQR-type gravity gradiometer, based on technology developed at the University of Maryland.
iCORUS gravity gradiometer
The iCORUS gravity gradiometer is a strapdown airborne gravity gradiometer, based on technology developed at iMAR Navigation in Germany.
Quantum Technology gravity gradiometers
Quantum Technology gravity gradiometers based on atom interferometry are currently under development by a number of university's world wide and are beginning to be used in practical applications. [3]

See also

Related Research Articles

<span class="mw-page-title-main">Geoid</span> Ocean shape without winds and tides

The geoid is the shape that the ocean surface would take under the influence of the gravity of Earth, including gravitational attraction and Earth's rotation, if other influences such as winds and tides were absent. This surface is extended through the continents. According to Gauss, who first described it, it is the "mathematical figure of the Earth", a smooth but irregular surface whose shape results from the uneven distribution of mass within and on the surface of Earth. It can be known only through extensive gravitational measurements and calculations. Despite being an important concept for almost 200 years in the history of geodesy and geophysics, it has been defined to high precision only since advances in satellite geodesy in the late 20th century.

Geopotential is the potential of the Earth's gravity field. For convenience it is often defined as the negative of the potential energy per unit mass, so that the gravity vector is obtained as the gradient of the geopotential, without the negation. In addition to the actual potential, a hypothetical normal potential and their difference, the disturbing potential, can also be defined.

<span class="mw-page-title-main">Accelerometer</span> Device that measures proper acceleration

An accelerometer is a device that measures the proper acceleration of an object. Proper acceleration is the acceleration of the object relative to an observer who is in free fall. Proper acceleration is different from coordinate acceleration, which is acceleration with respect to a given coordinate system, which may or may not be accelerating. For example, an accelerometer at rest on the surface of the Earth will measure an acceleration due to Earth's gravity straight upwards of about g ≈ 9.81 m/s2. By contrast, an accelerometer that is in free fall will measure zero acceleration.

g-force Term for accelerations felt as weight in multiples of standard gravity

The g-force or gravitational force equivalent is mass-specific force, expressed in units of standard gravity. It is used for sustained accelerations, that cause a perception of weight. For example, an object at rest on Earth's surface is subject to 1 g, equaling the conventional value of gravitational acceleration on Earth, about 9.8 m/s2. More transient acceleration, accompanied with significant jerk, is called shock.

In physics, chemistry and biology, a potential gradient is the local rate of change of the potential with respect to displacement, i.e. spatial derivative, or gradient. This quantity frequently occurs in equations of physical processes because it leads to some form of flux.

In atmospheric science, geostrophic flow is the theoretical wind that would result from an exact balance between the Coriolis force and the pressure gradient force. This condition is called geostrophic equilibrium or geostrophic balance. The geostrophic wind is directed parallel to isobars. This balance seldom holds exactly in nature. The true wind almost always differs from the geostrophic wind due to other forces such as friction from the ground. Thus, the actual wind would equal the geostrophic wind only if there were no friction and the isobars were perfectly straight. Despite this, much of the atmosphere outside the tropics is close to geostrophic flow much of the time and it is a valuable first approximation. Geostrophic flow in air or water is a zero-frequency inertial wave.

<span class="mw-page-title-main">Hydrostatics</span> Branch of fluid mechanics that studies fluids at rest

Fluid statics or hydrostatics is the branch of fluid mechanics that studies fluids at hydrostatic equilibrium and "the pressure in a fluid or exerted by a fluid on an immersed body".

The eotvos is a unit of acceleration divided by distance that was used in conjunction with the older centimetre–gram–second system of units (cgs). The eotvos is defined as 10−9 galileos per centimetre. The symbol of the eotvos unit is E.

<span class="mw-page-title-main">Bouguer anomaly</span> Type of gravity anomaly

In geodesy and geophysics, the Bouguer anomaly is a gravity anomaly, corrected for the height at which it is measured and the attraction of terrain. The height correction alone gives a free-air gravity anomaly.

<span class="mw-page-title-main">Inclinometer</span> Instrument used to measure the inclination of a surface relative to local gravity

An inclinometer or clinometer is an instrument used for measuring angles of slope, elevation, or depression of an object with respect to gravity's direction. It is also known as a tilt indicator, tilt sensor, tilt meter, slope alert, slope gauge, gradient meter, gradiometer, level gauge, level meter, declinometer, and pitch & roll indicator. Clinometers measure both inclines and declines using three different units of measure: degrees, percentage points, and topos. The astrolabe is an example of an inclinometer that was used for celestial navigation and location of astronomical objects from ancient times to the Renaissance.

<span class="mw-page-title-main">Gravimetry</span> Measurement of the strength of a gravitational field

Gravimetry is the measurement of the strength of a gravitational field. Gravimetry may be used when either the magnitude of a gravitational field or the properties of matter responsible for its creation are of interest. The study of gravity changes belongs to geodynamics.

<span class="mw-page-title-main">Satellite geodesy</span> Measurement of the Earth using satellites

Satellite geodesy is geodesy by means of artificial satellites—the measurement of the form and dimensions of Earth, the location of objects on its surface and the figure of the Earth's gravity field by means of artificial satellite techniques. It belongs to the broader field of space geodesy. Traditional astronomical geodesy is not commonly considered a part of satellite geodesy, although there is considerable overlap between the techniques.

<span class="mw-page-title-main">Hydraulic head</span> Specific measurement of liquid pressure above a vertical datum

Hydraulic head or piezometric head is a specific measurement of liquid pressure above a vertical datum.

In Newton's theory of gravitation and in various relativistic classical theories of gravitation, such as general relativity, the tidal tensor represents

  1. tidal accelerations of a cloud of test particles,
  2. tidal stresses in a small object immersed in an ambient gravitational field.
<span class="mw-page-title-main">Gravity Field and Steady-State Ocean Circulation Explorer</span> ESA satellite intended to map in the Earths gravity field. Part of the Living Planet Programme

The Gravity Field and Steady-State Ocean Circulation Explorer (GOCE) was the first of ESA's Living Planet Programme heavy satellites intended to map in unprecedented detail the Earth's gravity field. The spacecraft's primary instrumentation was a highly sensitive gravity gradiometer consisting of three pairs of accelerometers which measured gravitational gradients along three orthogonal axes.

<span class="mw-page-title-main">Gravity of Earth</span>

The gravity of Earth, denoted by g, is the net acceleration that is imparted to objects due to the combined effect of gravitation and the centrifugal force . It is a vector quantity, whose direction coincides with a plumb bob and strength or magnitude is given by the norm .

Geophysical survey is the systematic collection of geophysical data for spatial studies. Detection and analysis of the geophysical signals forms the core of Geophysical signal processing. The magnetic and gravitational fields emanating from the Earth's interior hold essential information concerning seismic activities and the internal structure. Hence, detection and analysis of the electric and Magnetic fields is very crucial. As the Electromagnetic and gravitational waves are multi-dimensional signals, all the 1-D transformation techniques can be extended for the analysis of these signals as well. Hence this article also discusses multi-dimensional signal processing techniques.

Zero-drag satellites or drag-free satellites are satellites where the payload follows a geodesic path through space only affected by gravity and not by non-gravitational forces such as drag of the residual atmosphere, light pressure and solar wind. A zero-drag satellite has two parts, an outer shell and an inner mass called the proof mass. The proof mass floats freely inside the outer shell, while the distance between the outer shell and the proof mass is constantly measured. When a change in the distance between the outer shell and the proof mass is detected, it means that the outer shell has been influenced by non-gravitational forces and moved relative to the proof mass. Thrusters on the outer shell will then reposition the outer shell relative to the proof mass so that its distance is the same as before the external influence changed it. The outer shell thus protects the proof mass from nearly all interactions with the outside that can cause acceleration, except those mediated by gravity, and by following the proof mass, the outer shell itself follows a geodesic path.

The index of physics articles is split into multiple pages due to its size.

Geophysical signal analysis is concerned with the detection and a subsequent processing of signals. Any signal which is varying conveys valuable information. Hence to understand the information embedded in such signals, we need to 'detect' and 'extract data' from such quantities. Geophysical signals are of extreme importance to us as they are information bearing signals which carry data related to petroleum deposits beneath the surface and seismic data. Analysis of geophysical signals also offers us a qualitative insight into the possibility of occurrence of a natural calamity such as earthquakes or volcanic eruptions.

References

  1. Gravity Gradiometry Today and Tomorrow (PDF), South African Geophysical Association, archived from the original (PDF) on 2011-02-22, retrieved 2011-06-27
  2. Using Gravity to Detect Underground Threats, Lockheed Martin, archived from the original on 2013-06-03, retrieved 2013-06-14
  3. Stray, Ben; Lamb, Andrew; Kaushik, Aisha; Vovrosh, Jamie; Winch, Jonathan; Hayati, Farzad; Boddice, Daniel; Stabrawa, Artur; Niggebaum, Alexander; Langlois, Mehdi; Lien, Yu-Hung; Lellouch, Samuel; Roshanmanesh, Sanaz; Ridley, Kevin; de Villiers, Geoffrey; Brown, Gareth; Cross, Trevor; Tuckwell, George; Faramarzi, Asaad; Metje, Nicole; Bongs, Kai; Holynski, Michael (2020). "Quantum sensing for gravity cartography". Nature. 602 (7898): 590–594. doi: 10.1038/s41586-021-04315-3 . PMC   8866129 . PMID   35197616.