Hessenberg matrix

Last updated

In linear algebra, a Hessenberg matrix is a special kind of square matrix, one that is "almost" triangular. To be exact, an upper Hessenberg matrix has zero entries below the first subdiagonal, and a lower Hessenberg matrix has zero entries above the first superdiagonal. [1] They are named after Karl Hessenberg. [2]

Contents

A Hessenberg decomposition is a matrix decomposition of a matrix into a unitary matrix and a Hessenberg matrix such that

where denotes the conjugate transpose.

Definitions

Upper Hessenberg matrix

A square matrix is said to be in upper Hessenberg form or to be an upper Hessenberg matrix if for all with .

An upper Hessenberg matrix is called unreduced if all subdiagonal entries are nonzero, i.e. if for all . [3]

Lower Hessenberg matrix

A square matrix is said to be in lower Hessenberg form or to be a lower Hessenberg matrix if its transpose is an upper Hessenberg matrix or equivalently if for all with .

A lower Hessenberg matrix is called unreduced if all superdiagonal entries are nonzero, i.e. if for all .

Examples

Consider the following matrices.

The matrix is an upper unreduced Hessenberg matrix, is a lower unreduced Hessenberg matrix and is a lower Hessenberg matrix but is not unreduced.

Computer programming

Many linear algebra algorithms require significantly less computational effort when applied to triangular matrices, and this improvement often carries over to Hessenberg matrices as well. If the constraints of a linear algebra problem do not allow a general matrix to be conveniently reduced to a triangular one, reduction to Hessenberg form is often the next best thing. In fact, reduction of any matrix to a Hessenberg form can be achieved in a finite number of steps (for example, through Householder's transformation of unitary similarity transforms). Subsequent reduction of Hessenberg matrix to a triangular matrix can be achieved through iterative procedures, such as shifted QR-factorization. In eigenvalue algorithms, the Hessenberg matrix can be further reduced to a triangular matrix through Shifted QR-factorization combined with deflation steps. Reducing a general matrix to a Hessenberg matrix and then reducing further to a triangular matrix, instead of directly reducing a general matrix to a triangular matrix, often economizes the arithmetic involved in the QR algorithm for eigenvalue problems.

Reduction to Hessenberg matrix

Householder transformations

Any matrix can be transformed into a Hessenberg matrix by a similarity transformation using Householder transformations. The following procedure for such a transformation is adapted from A Second Course In Linear Algebra by Garcia & Roger. [4]

Let be any real or complex matrix, then let be the submatrix of constructed by removing the first row in and let be the first column of . Construct the householder matrix where

This householder matrix will map to and as such, the block matrix will map the matrix to the matrix which has only zeros below the second entry of the first column. Now construct householder matrix in a similar manner as such that maps the first column of to , where is the submatrix of constructed by removing the first row and the first column of , then let which maps to the matrix which has only zeros below the first and second entry of the subdiagonal. Now construct and then in a similar manner, but for the matrix constructed by removing the first row and first column of and proceed as in the previous steps. Continue like this for a total of steps.

By construction of , the first columns of any matrix are invariant under multiplication by from the right. Hence, any matrix can be transformed to an upper Hessenberg matrix by a similarity transformation of the form .

Jacobi (Givens) rotations

A Jacobi rotation (also called Givens rotation) is an orthogonal matrix transformation in the form

where , , is the Jacobi rotation matrix with all matrix elements equal zero except for

One can zero the matrix element by choosing the rotation angle to satisfy the equation

Now, the sequence of such Jacobi rotations with the following

reduces the matrix to the lower Hessenberg form. [5]

Properties

For , it is vacuously true that every matrix is both upper Hessenberg, and lower Hessenberg. [6]

The product of a Hessenberg matrix with a triangular matrix is again Hessenberg. More precisely, if is upper Hessenberg and is upper triangular, then and are upper Hessenberg.

A matrix that is both upper Hessenberg and lower Hessenberg is a tridiagonal matrix, of which the Jacobi matrix is an important example. This includes the symmetric or Hermitian Hessenberg matrices. A Hermitian matrix can be reduced to tri-diagonal real symmetric matrices. [7]

Hessenberg operator

The Hessenberg operator is an infinite dimensional Hessenberg matrix. It commonly occurs as the generalization of the Jacobi operator to a system of orthogonal polynomials for the space of square-integrable holomorphic functions over some domain—that is, a Bergman space. In this case, the Hessenberg operator is the right-shift operator , given by

The eigenvalues of each principal submatrix of the Hessenberg operator are given by the characteristic polynomial for that submatrix. These polynomials are called the Bergman polynomials, and provide an orthogonal polynomial basis for Bergman space.

See also

Notes

  1. Horn & Johnson (1985), page 28; Stoer & Bulirsch (2002), page 251
  2. Biswa Nath Datta (2010) Numerical Linear Algebra and Applications, 2nd Ed., Society for Industrial and Applied Mathematics (SIAM) ISBN   978-0-89871-685-6, p. 307
  3. Horn & Johnson 1985 , p. 35
  4. Ramon Garcia, Stephan; Horn, Roger (2017). A Second Course In Linear Algebra. Cambridge University Press. ISBN   9781107103818.
  5. Bini, Dario A.; Robol, Leonardo (2016). "Quasiseparable Hessenberg reduction of real diagonal plus low rank matrices and applications". Linear Algebra and Its Applications. 502: 186–213. arXiv: 1501.07812 . doi:10.1016/j.laa.2015.08.026.
  6. Lecture Notes. Notes for 2016-10-21 Cornell University
  7. "Computational Routines (eigenvalues) in LAPACK". sites.science.oregonstate.edu. Retrieved 2020-05-24.

Related Research Articles

<span class="mw-page-title-main">Pauli matrices</span> Matrices important in quantum mechanics and the study of spin

In mathematical physics and mathematics, the Pauli matrices are a set of three 2 × 2 complex matrices that are Hermitian, involutory and unitary. Usually indicated by the Greek letter sigma, they are occasionally denoted by tau when used in connection with isospin symmetries.

In linear algebra, an orthogonal matrix, or orthonormal matrix, is a real square matrix whose columns and rows are orthonormal vectors.

In linear algebra, an invertible complex square matrix U is unitary if its matrix inverse U−1 equals its conjugate transpose U*, that is, if

<span class="mw-page-title-main">Orthogonal group</span> Type of group in mathematics

In mathematics, the orthogonal group in dimension n, denoted O(n), is the group of distance-preserving transformations of a Euclidean space of dimension n that preserve a fixed point, where the group operation is given by composing transformations. The orthogonal group is sometimes called the general orthogonal group, by analogy with the general linear group. Equivalently, it is the group of n × n orthogonal matrices, where the group operation is given by matrix multiplication (an orthogonal matrix is a real matrix whose inverse equals its transpose). The orthogonal group is an algebraic group and a Lie group. It is compact.

In mechanics and geometry, the 3D rotation group, often denoted O(3), is the group of all rotations about the origin of three-dimensional Euclidean space under the operation of composition.

In mathematics, particularly in linear algebra, a skew-symmetricmatrix is a square matrix whose transpose equals its negative. That is, it satisfies the condition

In mathematics, the conjugate transpose, also known as the Hermitian transpose, of an complex matrix is an matrix obtained by transposing and applying complex conjugation to each entry. There are several notations, such as or , , or .

<span class="mw-page-title-main">Lorentz group</span> Lie group of Lorentz transformations

In physics and mathematics, the Lorentz group is the group of all Lorentz transformations of Minkowski spacetime, the classical and quantum setting for all (non-gravitational) physical phenomena. The Lorentz group is named for the Dutch physicist Hendrik Lorentz.

In the mathematical discipline of linear algebra, a matrix decomposition or matrix factorization is a factorization of a matrix into a product of matrices. There are many different matrix decompositions; each finds use among a particular class of problems.

In linear algebra, a QR decomposition, also known as a QR factorization or QU factorization, is a decomposition of a matrix A into a product A = QR of an orthonormal matrix Q and an upper triangular matrix R. QR decomposition is often used to solve the linear least squares (LLS) problem and is the basis for a particular eigenvalue algorithm, the QR algorithm.

<span class="mw-page-title-main">Rotation (mathematics)</span> Motion of a certain space that preserves at least one point

Rotation in mathematics is a concept originating in geometry. Any rotation is a motion of a certain space that preserves at least one point. It can describe, for example, the motion of a rigid body around a fixed point. Rotation can have a sign (as in the sign of an angle): a clockwise rotation is a negative magnitude so a counterclockwise turn has a positive magnitude. A rotation is different from other types of motions: translations, which have no fixed points, and (hyperplane) reflections, each of them having an entire (n − 1)-dimensional flat of fixed points in a n-dimensional space.

An infinitesimal rotation matrix or differential rotation matrix is a matrix representing an infinitely small rotation.

In numerical analysis, one of the most important problems is designing efficient and stable algorithms for finding the eigenvalues of a matrix. These eigenvalue algorithms may also find eigenvectors.

In linear algebra, a tridiagonal matrix is a band matrix that has nonzero elements only on the main diagonal, the subdiagonal/lower diagonal, and the supradiagonal/upper diagonal. For example, the following matrix is tridiagonal:

In mathematics, the matrix exponential is a matrix function on square matrices analogous to the ordinary exponential function. It is used to solve systems of linear differential equations. In the theory of Lie groups, the matrix exponential gives the exponential map between a matrix Lie algebra and the corresponding Lie group.

In numerical linear algebra, a Givens rotation is a rotation in the plane spanned by two coordinates axes. Givens rotations are named after Wallace Givens, who introduced them to numerical analysts in the 1950s while he was working at Argonne National Laboratory.

In linear algebra, linear transformations can be represented by matrices. If is a linear transformation mapping to and is a column vector with entries, then

In linear algebra, a rotation matrix is a transformation matrix that is used to perform a rotation in Euclidean space. For example, using the convention below, the matrix

In mathematics, the Cayley transform, named after Arthur Cayley, is any of a cluster of related things. As originally described by Cayley (1846), the Cayley transform is a mapping between skew-symmetric matrices and special orthogonal matrices. The transform is a homography used in real analysis, complex analysis, and quaternionic analysis. In the theory of Hilbert spaces, the Cayley transform is a mapping between linear operators.

In geometry, various formalisms exist to express a rotation in three dimensions as a mathematical transformation. In physics, this concept is applied to classical mechanics where rotational kinematics is the science of quantitative description of a purely rotational motion. The orientation of an object at a given instant is described with the same tools, as it is defined as an imaginary rotation from a reference placement in space, rather than an actually observed rotation from a previous placement in space.

References