Homocystinuria

Last updated
Homocystinuria
Other namesCystathionine beta synthase deficiency or CBS deficiency [1]
L-Homocysteine.svg
Homocysteine
Specialty Endocrinology, medical genetics   OOjs UI icon edit-ltr-progressive.svg

Homocystinuria or HCU [2] is an inherited disorder of the metabolism of the amino acid methionine due to a deficiency of cystathionine beta synthase or methionine synthase. [3] It is an inherited autosomal recessive trait, which means a child needs to inherit a copy of the defective gene from both parents to be affected. Symptoms of homocystinuria can also be caused by a deficiency of vitamins B6, B12, or folate. [3]

Contents

Signs and symptoms

This defect leads to a multi-systemic disorder of the connective tissue, muscles, central nervous system (CNS), and cardiovascular system. Homocystinuria represents a group of hereditary metabolic disorders characterized by an accumulation of the amino acid homocysteine in the serum and an increased excretion of homocysteine in the urine. Infants appear to be normal and early symptoms, if any are present, are vague.[ citation needed ]

Signs and symptoms of homocystinuria that may be seen include the following:

Cause

It is usually caused by the deficiency of the enzyme cystathionine beta synthase, [3] mutations of other related enzymes such as methionine synthase, [3] or the deficiency of folic acid, vitamin B12 and/or pyridoxine (vitamin B6). [3]

Diagnosis

The term homocystinuria describes an increased excretion of the thiol amino acid homocysteine in urine (and incidentally, also an increased concentration in plasma). The source of this increase may be one of many metabolic factors, only one of which is CBS deficiency. Others include the re-methylation defects (cobalamin defects, methionine synthase deficiency, MTHFR) and vitamin deficiencies including riboflavin (vitamin B2), pyridoxal phosphate (vitamin B6), folate (vitamin B9), and cobalamin (vitamin B12). In light of this, a combined approach to laboratory diagnosis is required to reach a differential diagnosis.[ citation needed ]

CBS deficiency may be diagnosed by routine metabolic biochemistry. Genetic testing may be used to screen for known SNPs (mutations). In the first instance, plasma or urine amino acid analysis will frequently show an elevation of methionine and the presence of homocysteine. Many neonatal screening programs include methionine as a metabolite. The disorder may be distinguished from the re-methylation defects (e.g., MTHFR, methionine synthase deficiency, or the cobalamin defects) in lieu of the elevated methionine concentration. [7] Additionally, organic acid analysis or quantitative determination of methylmalonic acid should help to exclude cobalamin (vitamin B12) defects and vitamin B12 deficiency giving a differential diagnosis. [8]

The laboratory analysis of homocysteine itself is complicated because most homocysteine (possibly above 85%) is bound to other thiol amino acids and proteins in the form of disulphides (e.g., cysteine in cystine-homocysteine, homocysteine in homocysteine-homocysteine) via disulfide bonds. Since as an equilibrium process the proportion of free homocysteine is variable a true value of total homocysteine (free + bound) is useful for confirming diagnosis and particularly for monitoring of treatment efficacy. To this end it is prudent to perform total homocyst(e)ine analysis in which all disulphide bonds are subject to reduction prior to analysis, traditionally by HPLC after derivatisation with a fluorescent agent, thus giving a true reflection of the quantity of homocysteine in a plasma sample. [9]

Treatment

No specific cure has been discovered for homocystinuria; however, many people are treated using high doses of vitamin B6 (also known as pyridoxine). [10] Slightly less than 50% respond to this treatment and need to take supplemental vitamin B6 for the rest of their lives. Those who do not respond require a Low-sulfur diet (especially monitoring methionine), and most will need treatment with trimethylglycine. A normal dose of folic acid supplement and occasionally adding cysteine to the diet can be helpful, as glutathione is synthesized from cysteine (so adding cysteine can be important to reduce oxidative stress). Riboflavin, a cofactor for the MTHFR enzyme pathway and multiple glutathione-related pathways, may also be used.[ citation needed ]

Betaine (N,N,N-trimethylglycine) is used to reduce concentrations of homocysteine by promoting the conversion of homocysteine back to methionine, i.e., increasing flux through the re-methylation pathway independent of folate derivatives (which is mainly active in the liver and in the kidneys). The re-formed methionine is then gradually removed by incorporation into body protein. The methionine that is not converted into protein is converted to S-adenosyl-methionine which goes on to form homocysteine again. Betaine is, therefore, only effective if the quantity of methionine to be removed is small. Hence treatment includes both betaine and a diet low in methionine. In classical homocystinuria (CBS, or cystathione beta synthase deficiency), the plasma methionine level usually increases above the normal range of 30 micromoles/L and the concentrations should be monitored as potentially toxic levels (more than 400 micromoles/L) may be reached.[ citation needed ]

Low-protein food is recommended for this disorder, which requires food products low in particular types of amino acids (e.g., methionine).[ citation needed ] [11]

Prognosis

The life expectancy of patients with homocystinuria is reduced only if untreated. It is known that before the age of 30, almost one quarter of patients die as a result of thrombotic complications (e.g., heart attack).[ citation needed ]

Society and culture

One theory suggests that Akhenaten, a pharaoh of the eighteenth dynasty of Egypt, may have had homocystinuria. [12]

See also

Related Research Articles

<span class="mw-page-title-main">Folate</span> Vitamin B9; nutrient essential for DNA synthesis

Folate, also known as vitamin B9 and folacin, is one of the B vitamins. Manufactured folic acid, which is converted into folate by the body, is used as a dietary supplement and in food fortification as it is more stable during processing and storage. Folate is required for the body to make DNA and RNA and metabolise amino acids necessary for cell division. As the human body cannot make folate, it is required in the diet, making it an essential nutrient. It occurs naturally in many foods. The recommended adult daily intake of folate in the U.S. is 400 micrograms from foods or dietary supplements.

<span class="mw-page-title-main">Methionine</span> Sulfur-containing amino acid

Methionine is an essential amino acid in humans.

<span class="mw-page-title-main">Homocysteine</span> Chemical compound

Homocysteine or Hcy: is a non-proteinogenic α-amino acid. It is a homologue of the amino acid cysteine, differing by an additional methylene bridge (-CH2-). It is biosynthesized from methionine by the removal of its terminal Cε methyl group. In the body, homocysteine can be recycled into methionine or converted into cysteine with the aid of vitamin B6, B9, and B12.

<span class="mw-page-title-main">Methylenetetrahydrofolate reductase</span> Rate-limiting enzyme in the methyl cycle

Methylenetetrahydrofolatereductase (MTHFR) is the rate-limiting enzyme in the methyl cycle, and it is encoded by the MTHFR gene. Methylenetetrahydrofolate reductase catalyzes the conversion of 5,10-methylenetetrahydrofolate to 5-methyltetrahydrofolate, a cosubstrate for homocysteine remethylation to methionine. Natural variation in this gene is common in otherwise healthy people. Although some variants have been reported to influence susceptibility to occlusive vascular disease, neural tube defects, Alzheimer's disease and other forms of dementia, colon cancer, and acute leukemia, findings from small early studies have not been reproduced. Some mutations in this gene are associated with methylenetetrahydrofolate reductase deficiency. Complex I deficiency with recessive spastic paraparesis has also been linked to MTHFR variants. In addition, the aberrant promoter hypermethylation of this gene is associated with male infertility and recurrent spontaneous abortion.

<span class="mw-page-title-main">Megaloblastic anemia</span> Medical condition

Megaloblastic anemia is a type of macrocytic anemia. An anemia is a red blood cell defect that can lead to an undersupply of oxygen. Megaloblastic anemia results from inhibition of DNA synthesis during red blood cell production. When DNA synthesis is impaired, the cell cycle cannot progress from the G2 growth stage to the mitosis (M) stage. This leads to continuing cell growth without division, which presents as macrocytosis. Megaloblastic anemia has a rather slow onset, especially when compared to that of other anemias. The defect in red cell DNA synthesis is most often due to hypovitaminosis, specifically vitamin B12 deficiency or folate deficiency. Loss of micronutrients may also be a cause.

<span class="mw-page-title-main">Trimethylglycine</span> Chemical compound

Trimethylglycine is an amino acid derivative that occurs in plants. Trimethylglycine was the first betaine discovered; originally it was simply called betaine because, in the 19th century, it was discovered in sugar beets.

<span class="mw-page-title-main">Methionine synthase</span> Mammalian protein found in Homo sapiens

Methionine synthase also known as MS, MeSe, MTR is responsible for the regeneration of methionine from homocysteine. In humans it is encoded by the MTR gene (5-methyltetrahydrofolate-homocysteine methyltransferase). Methionine synthase forms part of the S-adenosylmethionine (SAMe) biosynthesis and regeneration cycle, and is the enzyme responsible for linking the cycle to one-carbon metabolism via the folate cycle. There are two primary forms of this enzyme, the Vitamin B12 (cobalamin)-dependent (MetH) and independent (MetE) forms, although minimal core methionine synthases that do not fit cleanly into either category have also been described in some anaerobic bacteria. The two dominant forms of the enzymes appear to be evolutionary independent and rely on considerably different chemical mechanisms. Mammals and other higher eukaryotes express only the cobalamin-dependent form. In contrast, the distribution of the two forms in Archaeplastida (plants and algae) is more complex. Plants exclusively possess the cobalamin-independent form, while algae have either one of the two, depending on species. Many different microorganisms express both the cobalamin-dependent and cobalamin-independent forms.

<span class="mw-page-title-main">Hyperhomocysteinemia</span> Medical condition

Hyperhomocysteinemia is a medical condition characterized by an abnormally high level of total homocysteine in the blood, conventionally described as above 15 μmol/L.

<span class="mw-page-title-main">Folate deficiency</span> Abnormally low level of folate (vitamin B9) in the body

Folate deficiency, also known as vitamin B9 deficiency, is a low level of folate and derivatives in the body. Signs of folate deficiency are often subtle. A low number of red blood cells (anemia) is a late finding in folate deficiency and folate deficiency anemia is the term given for this medical condition. It is characterized by the appearance of large-sized, abnormal red blood cells (megaloblasts), which form when there are inadequate stores of folic acid within the body.

<span class="mw-page-title-main">Hydroxocobalamin</span> Form of vitamin B12

Hydroxocobalamin, also known as vitamin B12a and hydroxycobalamin, is a vitamin found in food and used as a dietary supplement. As a supplement it is used to treat vitamin B12 deficiency including pernicious anemia. Other uses include treatment for cyanide poisoning, Leber's optic atrophy, and toxic amblyopia. It is given by injection into a muscle or vein.

<span class="mw-page-title-main">Cystathionine beta synthase</span> Mammalian protein found in humans

Cystathionine-β-synthase, also known as CBS, is an enzyme (EC 4.2.1.22) that in humans is encoded by the CBS gene. It catalyzes the first step of the transsulfuration pathway, from homocysteine to cystathionine:

<span class="mw-page-title-main">Cystathioninuria</span> Medical condition

Cystathioninuria, also called cystathionase deficiency, is an autosomal recessive metabolic disorder. It is characterized by an abnormal accumulation of plasma cystathionine leading to excess cystathionine in the urine. Hereditary cystathioninuria is associated with the reduced activity of the enzyme cystathionine gamma-lyase. It is considered a biochemical anomaly. This is because it associated with a wide range of diseases and its inconsistency.

<span class="mw-page-title-main">Transsulfuration pathway</span>

The transsulfuration pathway is a metabolic pathway involving the interconversion of cysteine and homocysteine through the intermediate cystathionine. Two transsulfurylation pathways are known: the forward and the reverse.

Vitamin B<sub>12</sub> deficiency Disorder resulting from low blood levels of vitamin B12

Vitamin B12 deficiency, also known as cobalamin deficiency, is the medical condition in which the blood and tissue have a lower than normal level of vitamin B12. Symptoms can vary from none to severe. Mild deficiency may have few or absent symptoms. In moderate deficiency, feeling tired, anemia, soreness of the tongue, mouth ulcers, breathlessness, feeling faint, rapid heartbeat, low blood pressure, pallor, hair loss, decreased ability to think and severe joint pain and the beginning of neurological symptoms, including abnormal sensations such as pins and needles, numbness and tinnitus may occur. Severe deficiency may include symptoms of reduced heart function as well as more severe neurological symptoms, including changes in reflexes, poor muscle function, memory problems, blurred vision, irritability, ataxia, decreased smell and taste, decreased level of consciousness, depression, anxiety, guilt and psychosis. If left untreated, some of these changes can become permanent. Temporary infertility reversible with treatment, may occur. In exclusively breastfed infants of vegetarian mothers who don't take B12 supplements as advised, undetected and untreated deficiency can lead to poor growth, poor development, and difficulties with movement.

<span class="mw-page-title-main">Transmethylation</span>

Transmethylation is a biologically important organic chemical reaction in which a methyl group is transferred from one compound to another.

<span class="mw-page-title-main">MTRR (gene)</span> Protein-coding gene in the species Homo sapiens

Methionine synthase reductase, also known as MSR, is an enzyme that in humans is encoded by the MTRR gene.

<span class="mw-page-title-main">Cobalamin biosynthesis</span>

Cobalamin biosynthesis is the process by which bacteria and archea make cobalamin, vitamin B12. Many steps are involved in converting aminolevulinic acid via uroporphyrinogen III and adenosylcobyric acid to the final forms in which it is used by enzymes in both the producing organisms and other species, including humans who acquire it through their diet.

Relatively speaking, the brain consumes an immense amount of energy in comparison to the rest of the body. The mechanisms involved in the transfer of energy from foods to neurons are likely to be fundamental to the control of brain function. Human bodily processes, including the brain, all require both macronutrients, as well as micronutrients.

Rowena Green Matthews, born in 1938, is the G. Robert Greenberg Distinguished University professor emeritus at the University of Michigan, Ann Arbor. Her research focuses on the role of organic cofactors as partners of enzymes catalyzing difficult biochemical reactions, especially folic acid and cobalamin. Among other honors, she was elected to the National Academy of Sciences in 2002 and the Institute of Medicine in 2004.

Methylenetetrahydrofolate reductase deficiency is the most common genetic cause of elevated serum levels of homocysteine (hyperhomocysteinemia). It is caused by genetic defects in MTHFR, which is an important enzyme in the methyl cycle.

References

  1. 1 2 Online Mendelian Inheritance in Man (OMIM): 236200
  2. "Homocystinuria". 9 May 2018.
  3. 1 2 3 4 5 Tao, Le (2020-01-02). First aid for the USMLE step 1 2020 : a student-to-student guide. Bhushan, Vikas,, Sochat, Matthew,, Kallianos, Kimberly,, Chavda, Yash,, Zureick, Andrew H. (Andrew Harrison), 1991-, Kalani, Mehboob. New York. ISBN   9781259837630. OCLC   948547794.{{cite book}}: CS1 maint: location missing publisher (link)
  4. Maillot F, Kraus JP, Lee PJ (2008). "Environmental influences on familial discordance of phenotype in people with homocystinuria: a case report". J Med Case Rep. 2 (1): 113. doi: 10.1186/1752-1947-2-113 . PMC   2377250 . PMID   18423051.
  5. Peter Nicholas Robinson; Maurice Godfrey (2004). Marfan syndrome: a primer for clinicians and scientists. Springer. pp. 5–. ISBN   978-0-306-48238-0 . Retrieved 12 April 2010.
  6. Goldman, Lee (2011). Goldman's Cecil Medicine (24th ed.). Philadelphia: Elsevier Saunders. p. 1362. ISBN   978-1437727883.
  7. (eds.), N. Blau ... (2003). Physician's guide to the laboratory diagnosis of metabolic diseases; with 270 tables (2. ed.). Berlin [u.a.]: Springer. ISBN   978-3540425427.{{cite book}}: |last= has generic name (help)
  8. Refsum, Helga; A. David Smith; Per M. Ueland; Ebba Nexo; Robert Clarke; Joseph McPartlin; Carole Johnston; Frode Engbaek; Jørn Schneede; Catherine McPartlin; John M. Scott (2004). "Facts and Recommendations about Total Homocysteine Determinations: An Expert Opinion". Clinical Chemistry. 50 (1): 3–32. doi: 10.1373/clinchem.2003.021634 . hdl: 2262/34586 . PMID   14709635.
  9. Carducci, Claudia; M. Birarelli; M. Nola; I. Antonozzi (1999). "Automated high-performance liquid chromatographic method for the determination of homocysteine in plasma samples". Journal of Chromatography A. 846 (1–2): 93–100. doi:10.1016/S0021-9673(98)01091-7. PMID   10420601.
  10. Bakker, R. C.; Brandjes, D. P. (June 1997). "Hyperhomocysteinaemia and associated disease". Pharmacy World & Science. 19 (3): 126–132. doi:10.1023/A:1008634632501. PMID   9259028. S2CID   21228831.
  11. YAP, SUFIN; NAUGHTEN, EILEEN R.; WILCKEN, BRIDGET; WILCKEN, DAVID E.L.; BOERS, GODFRIED H.J. (2000-01-01). "Vascular Complications of Severe Hyperhomocysteinemia in Patients with Homocystinuria Due to Cystathionine β-Synthase Deficiency: Effects of Homocysteine-Lowering Therapy". Seminars in Thrombosis and Hemostasis. 26 (3): 335–340. doi:10.1055/s-2000-8100. ISSN   0094-6176. PMID   11011851. S2CID   260318647.
  12. Cavka M, Kelava T (Mar 2010). "Homocystinuria, a possible solution of the Akhenaten's mystery". Coll Antropol. 34: 255–58. PMID   20402329.

Further reading