Igneous differentiation

Last updated

In geology, igneous differentiation, or magmatic differentiation, is an umbrella term for the various processes by which magmas undergo bulk chemical change during the partial melting process, cooling, emplacement, or eruption. The sequence of (usually increasingly silicic) magmas produced by igneous differentiation is known as a magma series.

Contents

Definitions

Primary melts

When a rock melts to form a liquid, the liquid is known as a primary melt. Primary melts have not undergone any differentiation and represent the starting composition of a magma. In nature, primary melts are rarely seen. Some leucosomes of migmatites are examples of primary melts. Primary melts derived from the mantle are especially important and are known as primitive melts or primitive magmas. By finding the primitive magma composition of a magma series, it is possible to model the composition of the rock from which a melt was formed, which is important because we have little direct evidence of the Earth's mantle.

Parental melts

Where it is impossible to find the primitive or primary magma composition, it is often useful to attempt to identify a parental melt. A parental melt is a magma composition from which the observed range of magma chemistries has been derived by the processes of igneous differentiation. It need not be a primitive melt.

For instance, a series of basalt lava flows is assumed to be related to one another. A composition from which they could reasonably be produced by fractional crystallization is termed a parental melt. To prove this, fractional crystallization models would be produced to test the hypothesis that they share a common parental melt.

Cumulate rocks

Fractional crystallization and accumulation of crystals formed during the differentiation process of a magmatic event are known as cumulate rocks, and those parts are the first which crystallize out of the magma. Identifying whether a rock is a cumulate or not is crucial for understanding if it can be modelled back to a primary melt or a primitive melt, and identifying whether the magma has dropped out cumulate minerals is equally important even for rocks which carry no phenocrysts.

Underlying causes of differentiation

The primary cause of change in the composition of a magma is cooling, which is an inevitable consequence of the magma being formed and migrating from the site of partial melting into an area of lower stress - generally a cooler volume of the crust.

Cooling causes the magma to begin to crystallize minerals from the melt or liquid portion of the magma. Most magmas are a mixture of liquid rock (melt) and crystalline minerals (phenocrysts).

Contamination is another cause of magma differentiation. Contamination can be caused by assimilation of wall rocks, mixing of two or more magmas or even by replenishment of the magma chamber with fresh, hot magma.

The whole gamut of mechanisms for differentiation has been referred to as the FARM process, which stands for fractional crystallization, assimilation, replenishment and magma mixing.

Fractional crystallization of igneous rocks

Fractional crystallization is the removal and segregation from a melt of mineral precipitates, which changes the composition of the melt. This is one of the most important geochemical and physical processes operating within the Earth's crust and mantle.

Fractional crystallization in silicate melts (magmas) is a very complex process compared to chemical systems in the laboratory because it is affected by a wide variety of phenomena. Prime amongst these are the composition, temperature, and pressure of a magma during its cooling.

The composition of a magma is the primary control on which mineral is crystallized as the melt cools down past the liquidus. For instance in mafic and ultramafic melts, the MgO and SiO2 contents determine whether forsterite olivine is precipitated or whether enstatite pyroxene is precipitated.

Two magmas of similar composition and temperature at different pressure may crystallize different minerals. An example is high-pressure and high-temperature fractional crystallization of granites to produce single-feldspar granite, and low-pressure low-temperature conditions which produce two-feldspar granites.

The partial pressure of volatile phases in silicate melts is also of prime importance, especially in near-solidus crystallization of granites.

Assimilation

Assimilation can be broadly defined as a process where a mass of magma wholly or partially homogenizes with materials derived from the wall rock of the magma body. [1] Assimilation is a popular mechanism to partly explain the felsification of ultramafic and mafic magmas as they rise through the crust: a hot primitive melt intruding into a cooler, felsic crust will melt the crust and mix with the resulting melt. [2] This then alters the composition of the primitive magma. Also, pre-existing mafic host rocks can be assimilated by very hot primitive magmas. [3] [4]

Effects of assimilation on the chemistry and evolution of magma bodies are to be expected, and have been clearly proven in many places. In the early 20th century there was a lively discussion on the relative importance of the process in igneous differentiation. [5] [6] More recent research has shown, however, that assimilation has a fundamental role in altering the trace element and isotopic composition of magmas, [7] in formation of some economically important ore deposits, [8] and in causing volcanic eruptions. [9]

Replenishment

When a melt undergoes cooling along the liquid line of descent, the results are limited to the production of a homogeneous solid body of intrusive rock, with uniform mineralogy and composition, or a partially differentiated cumulate mass with layers, compositional zones and so on. This behaviour is fairly predictable and easy enough to prove with geochemical investigations. In such cases, a magma chamber will form a close approximation of the ideal Bowen's reaction series. However, most magmatic systems are polyphase events, with several pulses of magmatism. In such a case, the liquid line of descent is interrupted by the injection of a fresh batch of hot, undifferentiated magma. This can cause extreme fractional crystallisation because of three main effects:

Magma mixing

Magma mixing is the process by which two magmas meet, comingle, and form a magma of a composition somewhere between the two end-member magmas.

Magma mixing is a common process in volcanic magma chambers, which are open-system chambers where magmas enter the chamber, [10] undergo some form of assimilation, fractional crystallisation and partial melt extraction (via eruption of lava), and are replenished.

Magma mixing also tends to occur at deeper levels in the crust and is considered one of the primary mechanisms for forming intermediate rocks such as monzonite and andesite. Here, due to heat transfer and increased volatile flux from subduction, the silicic crust melts to form a felsic magma (essentially granitic in composition). These granitic melts are known as an underplate. Basaltic primary melts formed in the mantle beneath the crust rise and mingle with the underplate magmas, the result being part-way between basalt and rhyolite; literally an 'intermediate' composition.

Other mechanisms of differentiation

Interface entrapment

Convection in a large magma chamber is subject to the interplay of forces generated by thermal convection and the resistance offered by friction, viscosity and drag on the magma offered by the walls of the magma chamber. Often near the margins of a magma chamber which is convecting, cooler and more viscous layers form concentrically from the outside in, defined by breaks in viscosity and temperature. This forms laminar flow, which separates several domains of the magma chamber which can begin to differentiate separately.

Flow banding is the result of a process of fractional crystallization which occurs by convection, if the crystals which are caught in the flow-banded margins are removed from the melt. The friction and viscosity of the magma causes phenocrysts and xenoliths within the magma or lava to slow down near the interface and become trapped in a viscous layer. This can change the composition of the melt in large intrusions, leading to differentiation.

Partial melt extraction

With reference to the definitions, above, a magma chamber will tend to cool down and crystallize minerals according to the liquid line of descent. When this occurs, especially in conjunction with zonation and crystal accumulation, and the melt portion is removed, this can change the composition of a magma chamber. In fact, this is basically fractional crystallization, except in this case we are observing a magma chamber which is the remnant left behind from which a daughter melt has been extracted.

If such a magma chamber continues to cool, the minerals it forms and its overall composition will not match a sample liquid line of descent or a parental magma composition.

Typical behaviours of magma chambers

It is worth reiterating that magma chambers are not usually static single entities. The typical magma chamber is formed from a series of injections of melt and magma, and most are also subject to some form of partial melt extraction.

Granite magmas are generally much more viscous than mafic magmas and are usually more homogeneous in composition. This is generally considered to be caused by the viscosity of the magma, which is orders of magnitude higher than mafic magmas. The higher viscosity means that, when melted, a granitic magma will tend to move in a larger concerted mass and be emplaced as a larger mass because it is less fluid and able to move. This is why granites tend to occur as large plutons, and mafic rocks as dikes and sills.

Granites are cooler and are therefore less able to melt and assimilate country rocks. Wholesale contamination is therefore minor and unusual, although mixing of granitic and basaltic melts is not unknown where basalt is injected into granitic magma chambers.

Mafic magmas are more liable to flow, and are therefore more likely to undergo periodic replenishment of a magma chamber. Because they are more fluid, crystal precipitation occurs much more rapidly, resulting in greater changes by fractional crystallisation. Higher temperatures also allow mafic magmas to assimilate wall rocks more readily and therefore contamination is more common and better developed.

Dissolved gases

All igneous magmas contain dissolved gases (water, carbonic acid, hydrogen sulfide, chlorine, fluorine, boric acid, etc.). Of these water is the principal, and was formerly believed to have percolated downwards from the Earth's surface to the heated rocks below, but is now generally admitted to be an integral part of the magma. Many peculiarities of the structure of the plutonic rocks as contrasted with the lavas may reasonably be accounted for by the operation of these gases, which were unable to escape as the deep-seated masses slowly cooled, while they were promptly given up by the superficial effusions. The acid plutonic or intrusive rocks have never been reproduced by laboratory experiments, and the only successful attempts to obtain their minerals artificially have been those in which special provision was made for the retention of the "mineralizing" gases in the crucibles or sealed tubes employed. These gases often do not enter into the composition of the rock-forming minerals, for most of these are free from water, carbonic acid, etc. Hence as crystallization goes on the residual melt must contain an ever-increasing proportion of volatile constituents. It is conceivable that in the final stages the still uncrystallized part of the magma has more resemblance to a solution of mineral matter in superheated steam than to a dry igneous fusion. Quartz, for example, is the last mineral to form in a granite. It bears much of the stamp of the quartz which we know has been deposited from aqueous solution in veins, etc. It is at the same time the most infusible of all the common minerals of rocks. Its late formation shows that in this case it arose at comparatively low temperatures and points clearly to the special importance of the gases of the magma as determining the sequence of crystallization. [6]

When solidification is nearly complete the gases can no longer be retained in the rock and make their escape through fissures towards the surface. They are powerful agents in attacking the minerals of the rocks which they traverse, and instances of their operation are found in the kaolinization of granites, tourmalinization and formation of greisen, deposition of quartz veins, and the group of changes known as propylitization. These "pneumatolytic" processes are of the first importance in the genesis of many ore deposits. They are a real part of the history of the magma itself and constitute the terminal phases of the volcanic sequence. [6]

Quantifying igneous differentiation

There are several methods of directly measuring and quantifying igneous differentiation processes;

In all cases, the primary and most valuable method for identifying magma differentiation processes is mapping the exposed rocks, tracking mineralogical changes within the igneous rocks and describing field relationships and textural evidence for magma differentiation. Clinopyroxene thermobarometry can be used to determine pressures and temperatures of magma differentiation.

See also

Related Research Articles

<span class="mw-page-title-main">Granite</span> Type of igneous rock

Granite is a coarse-grained (phaneritic) intrusive igneous rock composed mostly of quartz, alkali feldspar, and plagioclase. It forms from magma with a high content of silica and alkali metal oxides that slowly cools and solidifies underground. It is common in the continental crust of Earth, where it is found in igneous intrusions. These range in size from dikes only a few centimeters across to batholiths exposed over hundreds of square kilometers.

<span class="mw-page-title-main">Magma</span> Hot semifluid material found beneath the surface of Earth

Magma is the molten or semi-molten natural material from which all igneous rocks are formed. Magma is found beneath the surface of the Earth, and evidence of magmatism has also been discovered on other terrestrial planets and some natural satellites. Besides molten rock, magma may also contain suspended crystals and gas bubbles.

<span class="mw-page-title-main">Andesite</span> Type of volcanic rock

Andesite is a volcanic rock of intermediate composition. In a general sense, it is the intermediate type between silica-poor basalt and silica-rich rhyolite. It is fine-grained (aphanitic) to porphyritic in texture, and is composed predominantly of sodium-rich plagioclase plus pyroxene or hornblende.

<span class="mw-page-title-main">Migmatite</span> Mixture of metamorphic rock and igneous rock

Migmatite is a composite rock found in medium and high-grade metamorphic environments, commonly within Precambrian cratonic blocks. It consists of two or more constituents often layered repetitively: one layer is an older metamorphic rock that was reconstituted subsequently by partial melting ("neosome"), while the alternate layer has a pegmatitic, aplitic, granitic or generally plutonic appearance ("paleosome"). Commonly, migmatites occur below deformed metamorphic rocks that represent the base of eroded mountain chains.

<span class="mw-page-title-main">Porphyritic</span> Igneous rock with large and small crystals

Porphyritic is an adjective used in geology to describe igneous rocks with a distinct difference in the size of mineral crystals, with the larger crystals known as phenocrysts. Both extrusive and intrusive rocks can be porphyritic, meaning all types of igneous rocks can display some degree of porphyritic texture. Most porphyritic rocks have bimodal size ranges, meaning the rock is composed of two distinct sizes of crystal.

<span class="mw-page-title-main">Anorthosite</span> Mafic intrusive igneous rock composed predominantly of plagioclase

Anorthosite is a phaneritic, intrusive igneous rock characterized by its composition: mostly plagioclase feldspar (90–100%), with a minimal mafic component (0–10%). Pyroxene, ilmenite, magnetite, and olivine are the mafic minerals most commonly present.

Within the field of geology, Bowen's reaction series is the work of the Canadian petrologist Norman L. Bowen, who summarized, based on experiments and observations of natural rocks, the sequence of crystallization of common silicate minerals from typical basaltic magma undergoing fractional crystallization. Bowen's reaction series is able to explain why certain types of minerals tend to be found together while others are almost never associated with one another. He experimented in the early 1900s with powdered rock material that was heated until it melted and then allowed to cool to a target temperature whereupon he observed the types of minerals that formed in the rocks produced. He repeated this process with progressively cooler temperatures and the results he obtained led him to formulate his reaction series which is still accepted today as the idealized progression of minerals produced by cooling basaltic magma that undergoes fractional crystallization. Based upon Bowen's work, one can infer from the minerals present in a rock the relative conditions under which the material had formed.

Restite is the residual material left at the site of melting during the in place production of magma.

<span class="mw-page-title-main">Layered intrusion</span>

A layered intrusion is a large sill-like body of igneous rock which exhibits vertical layering or differences in composition and texture. These intrusions can be many kilometres in area covering from around 100 km2 (39 sq mi) to over 50,000 km2 (19,000 sq mi) and several hundred metres to over one kilometre (3,300 ft) in thickness. While most layered intrusions are Archean to Proterozoic in age, they may be any age such as the Cenozoic Skaergaard intrusion of east Greenland or the Rum layered intrusion in Scotland. Although most are ultramafic to mafic in composition, the Ilimaussaq intrusive complex of Greenland is an alkalic intrusion.

<span class="mw-page-title-main">Cumulate rock</span> Igneous rocks formed by the accumulation of crystals from a magma either by settling or floating.

Cumulate rocks are igneous rocks formed by the accumulation of crystals from a magma either by settling or floating. Cumulate rocks are named according to their texture; cumulate texture is diagnostic of the conditions of formation of this group of igneous rocks. Cumulates can be deposited on top of other older cumulates of different composition and colour, typically giving the cumulate rock a layered or banded appearance.

<span class="mw-page-title-main">Fractional crystallization (geology)</span> Process of rock formation

Fractional crystallization, or crystal fractionation, is one of the most important geochemical and physical processes operating within crust and mantle of a rocky planetary body, such as the Earth. It is important in the formation of igneous rocks because it is one of the main processes of magmatic differentiation. Fractional crystallization is also important in the formation of sedimentary evaporite rocks or simply fractional crystallization is the removal of early formed crystals from an Original homogeneous magma so that the crystals are prevented from further reaction with the residual melt.

The calc-alkaline magma series is one of two main subdivisions of the subalkaline magma series, the other subalkaline magma series being the tholeiitic series. A magma series is a series of compositions that describes the evolution of a mafic magma, which is high in magnesium and iron and produces basalt or gabbro, as it fractionally crystallizes to become a felsic magma, which is low in magnesium and iron and produces rhyolite or granite. Calc-alkaline rocks are rich in alkaline earths and alkali metals and make up a major part of the crust of the continents.

<span class="mw-page-title-main">Igneous intrusion</span> Body of intrusive igneous rocks

In geology, an igneous intrusion is a body of intrusive igneous rock that forms by crystallization of magma slowly cooling below the surface of the Earth. Intrusions have a wide variety of forms and compositions, illustrated by examples like the Palisades Sill of New York and New Jersey; the Henry Mountains of Utah; the Bushveld Igneous Complex of South Africa; Shiprock in New Mexico; the Ardnamurchan intrusion in Scotland; and the Sierra Nevada Batholith of California.

Magmatic water, also known as juvenile water, is an aqueous phase in equilibrium with minerals that have been dissolved by magma deep within the Earth's crust and is released to the atmosphere during a volcanic eruption. It plays a key role in assessing the crystallization of igneous rocks, particularly silicates, as well as the rheology and evolution of magma chambers. Magma is composed of minerals, crystals and volatiles in varying relative natural abundance. Magmatic differentiation varies significantly based on various factors, most notably the presence of water. An abundance of volatiles within magma chambers decreases viscosity and leads to the formation of minerals bearing halogens, including chloride and hydroxide groups. In addition, the relative abundance of volatiles varies within basaltic, andesitic, and rhyolitic magma chambers, leading to some volcanoes being exceedingly more explosive than others. Magmatic water is practically insoluble in silicate melts but has demonstrated the highest solubility within rhyolitic melts. An abundance of magmatic water has been shown to lead to high-grade deformation, altering the amount of δ18O and δ2H within host rocks.

<span class="mw-page-title-main">Igneous rock</span> Rock formed through the cooling and solidification of magma or lava

Igneous rock, or magmatic rock, is one of the three main rock types, the others being sedimentary and metamorphic. Igneous rocks are formed through the cooling and solidification of magma or lava.

<span class="mw-page-title-main">Magmatic underplating</span> Trapping of basaltic magmas within the crust

Magmatic underplating occurs when basaltic magmas are trapped during their rise to the surface at the Mohorovičić discontinuity or within the crust. Entrapment of magmas within the crust occurs due to the difference in relative densities between the rising magma and the surrounding rock. Magmatic underplating can be responsible for thickening of the crust when the magma cools. Geophysical seismic studies utilize the differences in densities to identify underplating that occurs at depth.

Experimental petrology is the field of research concerned with experimentally determining the physical and chemical behavior of rocks and their constituents. Because there is no way to directly observe or measure deep earth processes, geochemists rely on experimental petrology to establish quantitative values and relationships in order to construct models of the deep earth. Experimental petrology can range from creating artificial magmas to measure crystallization behavior to observing recrystallization of minerals at varying pressure/temperature conditions.

The lower oceanic crust is the lower part of the oceanic crust and represents the major part of it. It is generally located 4–8 km below the ocean floor and the major lithologies are mafic which derive from melts rising from the Earth's mantle. This part of the oceanic crust is an important zone for processes such as melt accumulation and melt modification. And the recycling of this part of the oceanic crust, together with the upper mantle has been suggested as a significant source component for tholeiitic magmas in Hawaiian volcanoes. Although the lower oceanic crust builds the link between the mantle and the MORB, and can't be neglected for the understanding of MORB evolution, the complex processes operating in this zone remain unclear and there is an ongoing debate in Earth Sciences about this. It is 6KM long.

<span class="mw-page-title-main">Crystal mush</span>

A crystal mush is magma that contains a significant amount of crystals suspended in the liquid phase (melt). As the crystal fraction makes up less than half of the volume, there is no rigid large-scale three-dimensional network as in solids. As such, their rheological behavior mirrors that of absolute liquids.

I-type granites are a category of granites originating from igneous sources, first proposed by Chappell and White (1974). They are recognized by a specific set of mineralogical, geochemical, textural, and isotopic characteristics that indicate, for example, magma hybridization in the deep crust. I-type granites are saturated in silica but undersaturated in aluminum; petrographic features are representative of the chemical composition of the initial magma. In contrast S-type granites are derived from partial melting of supracrustal or "sedimentary" source rocks.

References

  1. Heinonen, Jussi S.; Iles, Kieran A.; Heinonen, Aku; Fred, Riikka; Virtanen, Ville J.; Bohrson, Wendy A.; Spera, Frank J. (2021-05-31), Masotta, Matteo; Beier, Christoph; Mollo, Silvio (eds.), "From Binary Mixing to Magma Chamber Simulator: Geochemical Modeling of Assimilation in Magmatic Systems", Geophysical Monograph Series (1 ed.), Wiley, pp. 151–176, doi:10.1002/9781119564485.ch7, hdl: 10138/333362 , ISBN   978-1-119-56445-4, S2CID   239751052 , retrieved 2023-03-24. Open access version available from here: https://doi.org/10.1002/essoar.10504606.2
  2. Meade, F. C.; Troll, V. R.; Ellam, R. M.; Freda, C.; Font, L.; Donaldson, C. H.; Klonowska, I. (2014-06-20). "Bimodal magmatism produced by progressively inhibited crustal assimilation". Nature Communications. 5 (1): 4199. Bibcode:2014NatCo...5.4199M. doi: 10.1038/ncomms5199 . ISSN   2041-1723. PMID   24947142.
  3. J. Leuthold, J. C. Lissenberg, B. O'Driscoll, O. Karakas; T. Falloon, D.N. Klimentyeva, P. Ulmer (2018); Partial melting of the lower oceanic crust at spreading ridges. Frontiers in Earth Sciences: Petrology: 6(15): 20p; doi : 10.3389/feart.2018.00015
  4. Heinonen, Jussi S.; Spera, Frank J.; Bohrson, Wendy A. (2021-09-30). "Thermodynamic limits for assimilation of silicate crust in primitive magmas". Geology. 50 (1): 81–85. doi:10.1130/g49139.1. hdl: 10138/338579 . ISSN   0091-7613. S2CID   239139208.
  5. Daly, Reginald Aldworth (1905-09-01). "The secondary origin of certain granites". American Journal of Science. s4-20 (117): 185–216. Bibcode:1905AmJS...20..185D. doi:10.2475/ajs.s4-20.117.185. hdl: 2027/hvd.32044072250335 . ISSN   0002-9599.
  6. 1 2 3 Wikisource-logo.svg One or more of the preceding sentences incorporates text from a publication now in the public domain : Flett, John Smith (1911). "Petrology". In Chisholm, Hugh (ed.). Encyclopædia Britannica . Vol. 21 (11th ed.). Cambridge University Press. p. 329.
  7. Huppert, Herbert E.; Stephen, R.; Sparks, J. (1985-08-01). "Cooling and contamination of mafic and ultramafic magmas during ascent through continental crust". Earth and Planetary Science Letters. 74 (4): 371–386. Bibcode:1985E&PSL..74..371H. doi:10.1016/S0012-821X(85)80009-1. ISSN   0012-821X.
  8. Samalens, N.; Barnes, S-J.; Sawyer, E. W. (2017-03-01). "The role of black shales as a source of sulfur and semimetals in magmatic nickel-copper deposits: Example from the Partridge River Intrusion, Duluth Complex, Minnesota, USA". Ore Geology Reviews. 81: 173–187. Bibcode:2017OGRv...81..173S. doi:10.1016/j.oregeorev.2016.09.030. ISSN   0169-1368.
  9. Handley, H. K.; Reagan, M.; Gertisser, R.; Preece, K.; Berlo, K.; McGee, L. E.; Barclay, J.; Herd, R. (2018-02-01). "Timescales of magma ascent and degassing and the role of crustal assimilation at Merapi volcano (2006–2010), Indonesia: Constraints from uranium-series and radiogenic isotopic compositions". Geochimica et Cosmochimica Acta. 222: 34–52. Bibcode:2018GeCoA.222...34H. doi:10.1016/j.gca.2017.10.015. ISSN   0016-7037.
  10. Troll, Valentin R.; Donaldson, Colin H.; Emeleus, C. Henry. (2004-08-01). "Pre-eruptive magma mixing in ash-flow deposits of the Tertiary Rum Igneous Centre, Scotland". Contributions to Mineralogy and Petrology. 147 (6): 722–739. Bibcode:2004CoMP..147..722T. doi:10.1007/s00410-004-0584-0. ISSN   1432-0967. S2CID   128532728.