Lemnoideae

Last updated

Contents

Lemnoideae
Duckweeds.jpg
Close-up of two different duckweed types: Spirodela polyrrhiza and Wolffia globosa : The latter are less than 2 mm long.
Scientific classification OOjs UI icon edit-ltr.svg
Kingdom: Plantae
Clade: Tracheophytes
Clade: Angiosperms
Clade: Monocots
Order: Alismatales
Family: Araceae
Subfamily: Lemnoideae
Genera
Synonyms

Lemnaceae

Lemnoideae is a subfamily of flowering aquatic plants, known as duckweeds, water lentils, or water lenses. They float on or just beneath the surface of still or slow-moving bodies of fresh water and wetlands. Also known as bayroot, they arose from within the arum or aroid family (Araceae), [1] so often are classified as the subfamily Lemnoideae within the family Araceae. Other classifications, particularly those created prior to the end of the twentieth century, place them as a separate family, Lemnaceae.

These plants have a simple structure, lacking an obvious stem or leaves. The greater part of each plant is a small organized "thallus" or "frond" structure only a few cells thick, often with air pockets (aerenchyma) that allow it to float on or just under the water surface. Depending on the species, each plant may have no root or may have one or more simple rootlets. [2]

Reproduction is mostly by asexual budding (vegetative reproduction), which occurs from a meristem enclosed at the base of the frond. Occasionally, three tiny "flowers" consisting of two stamens and a pistil are produced, by which sexual reproduction occurs. Some view this "flower" as a pseudanthium, or reduced inflorescence, with three flowers that are distinctly either female or male and which are derived from the spadix in the Araceae. Evolution of the duckweed inflorescence remains ambiguous due to the considerable evolutionary reduction of these plants from their earlier relatives.

The flower of the duckweed genus Wolffia is the smallest known, measuring merely 0.3 mm long. [3] The fruit produced through this occasional reproduction is a utricle, and a seed is produced in a bag containing air that facilitates flotation.

Duckweed in natural environments

One of the more important factors influencing the distribution of wetland plants, and aquatic plants in particular, is nutrient availability. [4] Duckweeds tend to be associated with fertile, even eutrophic conditions. They can be spread by waterfowl and small mammals, transported inadvertently on their feet and bodies, [5] as well as by moving water. In water bodies with constant currents or overflow, the plants are carried down the water channels and do not proliferate greatly. In some locations, a cyclical pattern driven by weather patterns exists in which the plants proliferate greatly during low water-flow periods, then are carried away as rainy periods ensue.

Duckweed is an important high-protein food source for waterfowl. The tiny plants provide cover for fry of many aquatic species. The plants are used as shelter by pond-water species such as bullfrogs and fish such as bluegills. They also provide shade and, although frequently confused with them, can reduce certain light-generated growths of photoautotrophic algae.

Use as human food crop

Duckweed is consumed in some parts of Southeast Asia, namely Laos, Thailand, and Myanmar. [6] In addition, it is also cultivated as a vegetable in Israel. [7] It produces more protein per square meter than soybeans, so sometimes it is cited as a significant potential food source. [8]

Some initial investigations to what extent duckweed could be introduced in European markets show little consumer objection to the idea. [9] NASA's Caves of Mars Project identified duckweed as a top candidate for growing food on Mars. [10]

Invasive species

Despite some of these benefits, because duckweed thrives in high-nutrient wetland environments, the plants can be seen as a nuisance species when conditions favor excessive proliferation in environments that are traditionally low in nutrients or oligotrophic.

One example of this problem occurs within the Everglades, a mostly oligotrophic environment, when excess chemicals (that include fertilizers) are carried by storm runoff, or surface runoff, into its waterways. [11]

Urban runoff and agricultural pollution then begin to introduce increased levels of nutrients into the surrounding wetlands and waterways, which can cause a disruption to native ecology. These conditions allow for the invasion of a fast growing species such as duckweed to establish themselves, spread, and displace other native species such as sawgrass, and over time, result in widespread changes to the ecology of native sawgrass and slough habitats within the Everglades. [12]

Taxonomy

Duckweeds belong to the order Alismatales and the family Araceae. (a) is a phylogenetic tree based on ribulose-1, 5-bisphosphate carboxylase large-subunit genes. (b) is a schematic ventral view of Spirodela, to show the clonal, vegetative propagation of duckweeds. Daughter fronds (F1) originate from the vegetative node (No), from the mother frond F0 and remain attached to it by the stipule (Sti), which eventually breaks off, thereby releasing a new plant cluster. Daughter fronds may already initiate new fronds (F2) themselves before full maturity. Roots are attached at the prophyllum (P). (c) shows the progressive reduction from a leaf-like body with several veins and unbranched roots to a thallus-like morphology in the Lemnoideae. Lemnoideae Systematics & Biology.jpg
Duckweeds belong to the order Alismatales and the family Araceae. (a) is a phylogenetic tree based on ribulose-1, 5-bisphosphate carboxylase large-subunit genes. (b) is a schematic ventral view of Spirodela, to show the clonal, vegetative propagation of duckweeds. Daughter fronds (F1) originate from the vegetative node (No), from the mother frond F0 and remain attached to it by the stipule (Sti), which eventually breaks off, thereby releasing a new plant cluster. Daughter fronds may already initiate new fronds (F2) themselves before full maturity. Roots are attached at the prophyllum (P). (c) shows the progressive reduction from a leaf-like body with several veins and unbranched roots to a thallus-like morphology in the Lemnoideae.

The duckweeds have long been a taxonomic mystery, and usually have been considered to be their own family, the Lemnaceae. They primarily reproduce asexually. Flowers, if present at all, are small. Roots are either very much reduced, or absent entirely. They were suspected of being related to the Araceae as long ago as 1876, but until the advent of molecular phylogeny, testing this hypothesis was difficult.

Starting in 1995, studies began to confirm their placement in the Araceae and since then, most systematists consider them to be part of that family. [13]

Their position within their family has been slightly less clear; however, several twenty-first century studies place them in the position shown below. [13] Although they are in the same family as Pistia , another aquatic plant, they are not closely related. [13]

Araceae

Gymnostachydoideae

Orontioideae (skunk cabbages and golden club)

Lemnoideae (duckweeds)

most of the rest of the family Araceae

The genera of duckweeds are: Spirodela , Landoltia , Lemna , Wolffiella , and Wolffia .

Duckweed genome sizes have a ten-fold range (150~1,500 MB), potentially representing diploids to octaploids. The ancestral genus of Spirodela has the smallest genome size (150 MB, similar to Arabidopsis thaliana ), while the most derived genus, Wolffia, contains plants with the largest genome size (1,500 MB). [14] DNA sequencing has shown that Wolffiella and Wolffia are more closely related than the others. Spirodela is at the basal position of the taxon, followed by Lemna, Wolffiella, and Wolffia, which is the most derived. [15]

To identify different duckweed genomes, a DNA-based molecular identification system was developed based on seven plastid-markers proposed by the Consortium for the Barcode of Life. [16] The atpF-atpH non-coding spacer was chosen as a universal DNA barcoding marker for species-level identification of duckweeds. [17]

Fossil record

Extinct free-floating aquatic plants and pollen with affinities to the Lemnoideae first appear in the fossil record during the Late Cretaceous (Maastrichtian) as evidenced by floating leaves described as Aquaephyllum auriculatum from Patagonia, Argentina, and the lemnoid pollen genus Pandaniidites . [18]

Fossils of floating leaves with rootlets from the Paleocene of southern Saskatchewan, Canada, that were originally described as Lemna (Spirodela) scutata by John William Dawson in 1885, have been redescribed as Limnobiophyllum . [19] In addition to western North America, Limnobiophyllum has been reported from the Paleocene of eastern Russia and the Miocene of the Czech Republic. [19] Unusually complete specimens from the Paleocene of Alberta, Canada, range from single leaves up to about 4 cm (1.6 in) in diameter to rosettes of up to four leaves, some of which were connected to adjacent plants by stolons, and a few of which bear remains of flowers with anthers that contain Pandaniidites pollen. [20] Occurrences of lemnoid seeds described as Lemnospermum have also been reported. [19]

Research and applications

Research and applications of duckweeds are promoted by two international organizations, The International Lemna Association [21] and the International Steering Committee on Duckweed Research and Applications. [22]

In July 2008, the U.S. Department of Energy (DOE) Joint Genome Institute announced that the Community Sequencing Program would fund sequencing of the genome of the giant duckweed, Spirodela polyrhiza . This was a priority project for DOE in 2009. The research was intended to facilitate new biomass and bioenergy programs. [23] The results were published in February 2014. They provide insight into how this plant is adapted to rapid growth and an aquatic lifestyle. [24]

Potential clean energy source

Duckweed is being studied by researchers around the world as a possible source of clean energy. In the U.S., in addition to being the subject of study by the DOE, both Rutgers University and North Carolina State University have ongoing projects to determine whether duckweed might be a source of cost-effective, clean, renewable energy. [25] [26] Duckweed is a good candidate as a biofuel because it grows rapidly, produces five to six times as much starch as corn per unit of area, and does not contribute to global warming. [27] [28] The rapid nature of duckweed has shown that it can double biomass within four and a half days. [29] [30] [31] Duckweed removes carbon dioxide from the atmosphere, and it may have value for climate change mitigation. [32]

Filtration of contaminants and nutrients

The plants can provide nitrate removal, if cropped, and the duckweeds are important in the process of bioremediation because they grow rapidly, absorbing excess mineral nutrients, particularly nitrogen and phosphates. For these reasons, they are touted as water purifiers of untapped value. [33]

The Swiss Department of Water and Sanitation in Developing Countries, associated with the Swiss Federal Institute for Environmental Science and Technology, asserts that as well as the food and agricultural values, duckweed also may be used for wastewater treatment to capture toxins and for odor control, and that if a mat of duckweed is maintained during harvesting for removal of the toxins captured thereby, it prevents the development of algae and controls the breeding of mosquitoes. [34] The same publication provides an extensive list of references for many duckweed-related topics.

These plants also may play a role in conservation of water because a cover of duckweed will reduce evaporation of water when compared to the rate of a similarly sized water body with a clear surface.

Duckweed also functions as a bioremediator by effectively filtering contaminants such as bacteria, nitrogen, phosphates, and other nutrients from naturally occurring bodies of water, constructed wetlands, and wastewater. [35] [36] [37]

A start-up, microTERRA, based in Mexico has attempted to use duckweed as clean water in privately owned aquaculture farms. The plants use nitrogen and phosphorus produced from fish waste as fertilizer, while simultaneously cleaning the water as it grows. The water can then be reused by the aquaculture farmers, and the duckweed, which has a 35-42% protein content, can be harvested as a source of sustainable protein. [38]

See also

Related Research Articles

<span class="mw-page-title-main">Araceae</span> Family of flowering plants

The Araceae are a family of monocotyledonous flowering plants in which flowers are borne on a type of inflorescence called a spadix. The spadix is usually accompanied by, and sometimes partially enclosed in, a spathe. Also known as the arum family, members are often colloquially known as aroids. This family of 140 genera and about 4,075 known species is most diverse in the New World tropics, although also distributed in the Old World tropics and northern temperate regions.

<span class="mw-page-title-main">Wetland</span> Land area that is permanently, or seasonally saturated with water

A wetland is a distinct ecosystem that is flooded or saturated by water, either permanently for years or decades or seasonally for a shorter periods. Flooding results in oxygen-free anoxic processes prevailing, especially in the soils. The primary factor that distinguishes wetlands from terrestrial land forms or water bodies is the characteristic vegetation of aquatic plants, adapted to the unique anoxic hydric soils. Wetlands are considered among the most biologically diverse of all ecosystems, serving as home to a wide range of plant and animal species. Methods for assessing wetland functions, wetland ecological health, and general wetland condition have been developed for many regions of the world. These methods have contributed to wetland conservation partly by raising public awareness of the functions some wetlands provide. Constructed wetlands are designed and built to treat municipal and industrial wastewater as well as to divert stormwater runoff. Constructed wetlands may also play a role in water-sensitive urban design.

<span class="mw-page-title-main">Aquatic plant</span> Plant that has adapted to living in an aquatic environment

Aquatic plants are plants that have adapted to living in aquatic environments. They are also referred to as hydrophytes or macrophytes to distinguish them from algae and other microphytes. A macrophyte is a plant that grows in or near water and is either emergent, submergent, or floating. In lakes and rivers macrophytes provide cover for fish, substrate for aquatic invertebrates, produce oxygen, and act as food for some fish and wildlife.

<i>Lemna</i> Genus of flowering plants in the family Araceae

Lemna is a genus of free-floating aquatic plants referred to by the common name "duckweed". They are morphologically divergent members of the arum family Araceae. These rapidly growing plants have found uses as a model system for studies in community ecology, basic plant biology, ecotoxicology, and production of biopharmaceuticals, and as a source of animal feeds for agriculture and aquaculture. Currently, 14 species of Lemna are recognised.

<i>Spirodela</i> Genus of aquatic plants

Spirodela is a genus of aquatic plants, one of several genera containing plants commonly called duckweed. Spirodela species are members of the Araceae under the APG II system. They were formerly members of the Lemnaceae.

This article gives an overview of the aquatic communities in the British National Vegetation Classification system.

<i>Spirodela punctata</i> Species of flowering plant in the family Araceae

Spirodela punctata is a species of duckweed (Lemnoideae). The species is morphologically intermediate between Lemna and other species of Spirodela. In 1999 D.H. Les and D.J. Crawford proposed segregating the species to a new genus Landoltia containing just the species L. punctata, on the basis of biochemical and DNA studies.

<i>Wolffia</i> Genus of aquatic plants

Wolffia is a genus of aquatic plants with a cosmopolitan distribution. They include the smallest flowering plants on Earth. Commonly called watermeal or duckweed, these aquatic plants resemble specks of cornmeal floating on the water. They often float together in pairs or form floating mats with related plants, such as Lemna and Spirodela species.

<i>Lemna minor</i> Species of flowering plant in the family Araceae

Lemna minor, the common duckweed or lesser duckweed, is a species of aquatic freshwater plant in the subfamily Lemnoideae of the arum family Araceae. L. minor is used as animal fodder, bioremediator, for wastewater nutrient recovery, and other applications.

<span class="mw-page-title-main">Joachim Messing</span> German-American biologist (1946–2019)

Joachim Wilhelm "Jo" Messing was a German-American biologist who was a professor of molecular biology and the fourth director of the Waksman Institute of Microbiology at Rutgers University.

<i>Cataclysta lemnata</i> Species of moth

Cataclysta lemnata, the small china-mark, is a moth species of the family Crambidae. It is found in Europe, Morocco and Iran.

<span class="mw-page-title-main">Sifton Bog</span>

The Sifton Bog Environmentally Significant Area is a wetland jointly administered by the city of London, Ontario and the Upper Thames River Conservation Authority. It is located west of Hyde Park Road and south of Oxford Street inside the city limits of London, Southern Ontario, Canada. It is a Class 2 provincially significant wetland.

Wayne P. Armstrong is a natural historian, author, photographer and creator of the extensive online natural history textbook, Wayne's Word: An Online Textbook Of Natural History.

<i>Spirodela polyrhiza</i> Species of flowering plant in the family Araceae

Spirodela polyrhiza is a species of duckweed known by the common names common duckmeat, greater duckweed, great duckmeat, common duckweed, and duckmeat. It can be found nearly worldwide in many types of freshwater habitat.

<i>Wolffia arrhiza</i> Species of flowering plant in the family Araceae

Wolffia arrhiza is a species of flowering plant known by the common names spotless watermeal and rootless duckweed, belonging to the Araceae, a family rich in water-loving species, such as Arum and Pistia. It is the smallest vascular plant on Earth. It is native to Europe, Africa, and parts of Asia, and it is present in other parts of the world as a naturalized species.

<i>Lemna aequinoctialis</i> Species of flowering plant in the family Araceae

Lemna aequinoctialis, the lesser duckweed, is a tiny, floating aquatic plant in the aroid family, found in quiet, still waters of the Southern U.S., as well as México and some Caribbean Islands. Additionally, it can be found from the state of Virginia south through Florida, north to Nebraska and even into southern Wisconsin. It is also widespread in the American Southwest, from Texas to the coast of California, preferring lagoons and still ponds, which it accesses via seasonal flooding and occasional precipitation. Fronds are generally triple-nerved, green, and measure up-to 6 mm long. Flowers are single-ovulate, with a small utricular scale open on one side. Seeds have 8–26 ribs.

<i>Elophila turbata</i> Species of moth

Elophila turbata is a moth in the family Crambidae found in Africa and Asia. It was first described by the English entomologist Arthur Gardiner Butler in 1881 from a specimen found in Yokohama, Japan.

References

  1. Sheh-May Tam; Peter C. Boyce; Tim M. Upson; Denis Barabé; Anne Bruneau; Felix Forest; John S. Parker (2004). "Intergeneric and infrafamilial phylogeny of subfamily Monsteroideae (Araceae) revealed by chloroplast <011>trnL-F sequences". American Journal of Botany. 91 (3): 490–498. doi: 10.3732/ajb.91.3.490 . PMID   21653404.
  2. Sculthorpe, Cyril Duncan (1985). The Biology of Aquatic Vascular Plants . Koeltz Scientific Books. ISBN   978-3-87429-257-3.
  3. Landolt, Elias (1986). Biosystematic investigations in the family of duckweeds (Lemnaceae) Vol. 2: The family of Lemnaceae: a monographic study. – Morphology, karyology, ecology, geographic distribution, nomenclature, descriptions. Zürich: Eidgenössische Technische Hochschule Zürich.
  4. Keddy, Paul A. (2010). "Fertility". Wetland Ecology: Principles and conservation (2nd ed.). Cambridge University Press. p. 79. ISBN   978-0-521-73967-2 . Retrieved 7 May 2012.
  5. Hutchinson, G. Evelyn (1975). A Treatise on Limnology. Vol. 3: Limnological botany. New York, NY: John Wiley & Sons.
  6. Appenroth, K.J.; Sree, K.S.; Böhm, V.; Hammann, S.; Vetter, W.; Leiterer, M.; Jahreis, G. (2017). "Nutritional value of duckweeds (Lemnaceae) as human food". Food Chemistry. 217: 266–273. doi:10.1016/j.foodchem.2016.08.116. PMID   27664634. S2CID   6617534.
  7. "Lemna Gibbous Duckweed, Swollen duckweed, Windbags, Duckweed PFAF Plant Database". pfaf.org. Retrieved 4 January 2023.
  8. Landesman, Louis. "Dr. Wastewater's duckweed application page". Archived from the original on 27 October 2009. Retrieved 31 January 2012.
  9. de Beukelaar, Myrthe F.; Zeinstra, Gertrude G.; Mes, Jurriaan J.; Fischer, Arnout R.H. (2019). "Duckweed as human food: The influence of meal context and information on duckweed acceptability of Dutch consumers". Food Quality and Preference. 71 (1): 76–86. doi: 10.1016/j.foodqual.2018.06.005 .
  10. "Flat crops for Mars". The caves of Mars (highmars.org). Archived from the original on 1 July 2007. Retrieved 11 January 2022.
  11. Cunningham, William; Cunningham, Mary (2015). Environmental Science: A global concern (13th ed.). New York, NY: McGraw-Hill Education. p. 415. ISBN   9781259255724.
  12. Finkl, Charles; Makowski, Christopher (2017). Coastal Wetlands: Alteration and remediation. Cham, Switzerland: Springer. p. 16. ISBN   9783319561783 . Retrieved 1 January 2021.
  13. 1 2 3 Cabrera, Lidia I.; Salazar, Gerardo A.; Chase, Mark W.; Mayo, Simon J.; Bogner, Josef; Dávila, Patricia (2008). "Phylogenetic relationships of aroids and duckweeds (Araceae) inferred from coding and noncoding plastid DNA". American Journal of Botany . 95 (9): 1153–1165. doi: 10.3732/ajb.0800073 . PMID   21632433.
  14. Wang, Wenqin; Kerstetter, Randall A.; Michael, Todd P. (2011). "Evolution of Genome Size in Duckweeds (Lemnaceae)". Journal of Botany. 2011 (570319): 1–9. doi: 10.1155/2011/570319 . ISSN   2090-0120.
  15. Wang, Wenqin; Messing, Joachim; Badger, Jonathan H. (2011). "High-Throughput sequencing of three Lemnoideae (duckweeds) chloroplast genomes from total DNA". PLOS ONE. 6 (9): e24670. Bibcode:2011PLoSO...624670W. doi: 10.1371/journal.pone.0024670 . PMC   3170387 . PMID   21931804.
  16. Hollingsworth, P.M.; et al. (July 2009). "A DNA barcode for land plants" (PDF). Proceedings of the National Academy of Sciences. 106 (31): 12794–12797. doi: 10.1073/pnas.0905845106 . PMC   2722355 . PMID   19666622 . Retrieved 2 August 2012.
  17. Wang, Wenqin; Wu, Yongrui; Yan, Yiheng; Ermakova, Marina; Kerstetter, Randall; Messing, Joachim (2010). "DNA barcoding of the Lemnaceae, a family of aquatic monocots". BMC Plant Biology. 10 (1): 205. doi: 10.1186/1471-2229-10-205 . PMC   2956554 . PMID   20846439.
  18. Gallego, J.; Gandolfo, M.A.; Cúneo, N.R.; Zamaloa, M.C. (2014). "Fossil Araceae from the upper Cretaceous of Patagonia, Argentina, with implications on the origin of free-floating aquatic aroids". Review of Palaeobotany and Palynology. 211: 78–86. doi:10.1016/j.revpalbo.2014.08.017. hdl: 11336/36506 .
  19. 1 2 3 Kvaček, Z. (1995). "Limnobiophyllum(Krassilov) – A fossil link between Araceae and Lemnaceae". Aquatic Botany. 50: 49–61. doi:10.1016/0304-3770(94)00442-O.
  20. Stockey, R.A.; Hoffman, G.L.; Rothwell, G.W. (1997). "The fossil monocot Limnobiophyllum scutatum: Resolving the phylogeny of Lemnaceae". American Journal of Botany . 84 (3): 355–368. doi: 10.2307/2446009 . JSTOR   2446009. PMID   21708589. S2CID   20957240.
  21. "The International Lemna Association (ILA)" (official website).
  22. "International Steering Committee on Duckweed Research and Applications (ISCDRA)" (official website).
  23. "Duckweed genome sequencing has global implications". E! Science News (Esciencenews.com). 8 July 2008. Retrieved 13 November 2011.
  24. Wang, W.; et al. (2014). "The Spirodela polyrhiza genome reveals insights into its neotenous reduction fast growth and aquatic lifestyle". Nature Communications . 5: 3311. doi: 10.1038/ncomms4311 . PMC   3948053 . PMID   24548928.
  25. Michael, Todd P. (2008). "Genome sequencing of the duckweed Spirodela polyrhiza: A biofuels, bioremediation, and carbon cycling crop" (PDF). Rutgers University. Archived from the original (PDF) on 3 October 2011. Retrieved 7 May 2012.
  26. "Researchers Find Fuel in Odd Places". Ncsu.edu. Retrieved 13 November 2011.
  27. Sims, Bryan (n.d.). "Duckweed quacks volumes of potential". Biomassmagazine.com. Retrieved 13 November 2011.
  28. "Duckweed a possible solution to energy needs, researchers say". Pressofatlanticcity.com. 3 May 2010. Retrieved 13 November 2011.
  29. Faizal, Ahmad; Sembada, Anca Awal; Priharto, Neil (1 January 2021). "Production of bioethanol from four species of duckweeds (Landoltia punctata, Lemna aequinoctialis, Spirodela polyrrhiza, and Wolffia arrhiza) through optimization of saccharification process and fermentation with Saccharomyces cerevisiae". Saudi Journal of Biological Sciences. 28 (1): 294–301. doi:10.1016/j.sjbs.2020.10.002. ISSN   1319-562X. PMC   7785427 . PMID   33424309.
  30. Ziegler, P.; Adelmann, K.; Zimmer, S.; Schmidt, C.; Appenroth, K.‐J. (6 May 2014). Keurentjes, J. (ed.). "Relative in vitro growth rates of duckweeds ( L emnaceae) – the most rapidly growing higher plants". Plant Biology. 17 (s1): 33–41. doi:10.1111/plb.12184. ISSN   1435-8603.
  31. Guo, Ling; Fang, Yang; Jin, Yanling; He, Kaize; Zhao, Hai (1 November 2023). "High starch duckweed biomass production and its highly-efficient conversion to bioethanol". Environmental Technology & Innovation. 32: 103296. doi: 10.1016/j.eti.2023.103296 . ISSN   2352-1864.
  32. "Carbon Neutral Energy". American Energy Independence. Retrieved 13 November 2011.
  33. "Duckweed wastewater treatment and reuse for fodder (West Bank)". Idrc.ca. Archived from the original on 8 June 2011. Retrieved 13 November 2011.
  34. Iqbal, Sascha (March 1999). "Duckweed aquaculture: Potentials, possibilities, and limitations for combined wastewater treatment and animal feed production in developing countries" (PDF). SANDEC Report. 6 (99). Retrieved 31 January 2012.
  35. "Duckweed genome sequencing has global implications. Pond scum can undo pollution, fight global warming and alleviate world hunger" (Press release). Rutgers University. 8 July 2008. Retrieved 10 March 2022.
  36. Cross, John W. "Practical duckweed: Application areas and sponsors". Mobot.org. Retrieved 13 November 2011.
  37. Knibb, Wayne (July 2001 – June 2004). "Bioremediation of aquaculture waste and degraded waterways using finfish". Department of Primary Industries & Fisheries Tools. Australia: Queensland Government. Archived from the original on 20 October 2007. Retrieved 6 February 2012.
  38. "3 Eco-Innovators Tackling Pollution and Climate Change". Columbia Magazine. Retrieved 24 November 2021.
derived from
Watson, L. & Dallwitz, M.J. (3 May 2006) [1992]. The Families of Flowering Plants: Descriptions, illustrations, identification, information retrieval. Archived from the original on 3 January 2007 via delta-intkey.com.