Bioenergy with carbon capture and storage

Last updated

Diagram-of-Bioenergie power plant with carbon capture and storage (cropped).jpg (description page) Diagram-of-Bioenergie power plant with carbon capture and storage (cropped).jpg
Diagram-of-Bioenergie power plant with carbon capture and storage (cropped).jpg (description page)

Bioenergy with carbon capture and storage (BECCS) is the process of extracting bioenergy from biomass and capturing and storing the carbon, thereby removing it from the atmosphere. [1] BECCS can theoretically be a "negative emissions technology" (NET), [2] although its deployment at the scale considered by many governments and industries can "also pose major economic, technological, and social feasibility challenges; threaten food security and human rights; and risk overstepping multiple planetary boundaries, with potentially irreversible consequences". [3] The carbon in the biomass comes from the greenhouse gas carbon dioxide (CO2) which is extracted from the atmosphere by the biomass when it grows. Energy ("bioenergy") is extracted in useful forms (electricity, heat, biofuels, etc.) as the biomass is utilized through combustion, fermentation, pyrolysis or other conversion methods.

Contents

Some of the carbon in the biomass is converted to CO2 or biochar which can then be stored by geologic sequestration or land application, respectively, enabling carbon dioxide removal (CDR). [2]

The potential range of negative emissions from BECCS was estimated to be zero to 22 giga tonnes per year. [4] As of 2019, five facilities around the world were actively using BECCS technologies and were capturing approximately 1.5 million tonnes per year of CO2. [5] Wide deployment of BECCS is constrained by cost and availability of biomass. [6] [7] :10

Negative emission

Carbon flow schematic for different energy systems. Carbon flow.jpg
Carbon flow schematic for different energy systems.

The main appeal of BECCS is in its ability to result in negative emissions of CO2. The capture of carbon dioxide from bioenergy sources effectively removes CO2 from the atmosphere. [8] [9]

Bioenergy is derived from biomass which is a renewable energy source and serves as a carbon sink during its growth. During industrial processes, the biomass combusted or processed re-releases the CO2 into the atmosphere. Carbon capture and storage (CCS) technology serves to intercept the release of CO2 into the atmosphere and redirect it into geological storage locations, [10] [11] or concrete. [12] [13] The process thus results in a net zero emission of CO2, though this may be positively or negatively altered depending on the carbon emissions associated with biomass growth, transport and processing, see below under environmental considerations. [14] CO2 with a biomass origin is not only released from biomass fuelled power plants, but also during the production of pulp used to make paper and in the production of biofuels such as biogas and bioethanol. The BECCS technology can also be employed on industrial processes such as these [15] and making cement. [16]

BECCS technologies trap carbon dioxide in geologic formations in a semi-permanent way, whereas a tree stores its carbon only during its lifetime. In 2005 it was estimated that more than 99% of carbon dioxide stored through geologic sequestration is likely to stay in place for more than 1000 years. [17] In 2005, the IPCC estimated that BECCS technology would provide a "better permanence" by storing CO2 in geological formations underground, relative to other types of carbon sinks. Carbon sinks such as the ocean, trees, and soil involve a risk of adverse climate change feedback at increased temperatures. [18] [17]

Industrial processes have released too much CO2 to be absorbed by conventional sinks such as trees and soil to reach low emission targets. [19] In addition to the presently accumulated emissions, there will be significant additional emissions during this century, even in the most ambitious low-emission scenarios. BECCS has therefore been suggested as a technology to reverse the emission trend and create a global system of net negative emissions. [1] [20] [19] [21] [22] This implies that the emissions would not only be zero, but negative, so that not only the emissions, but the absolute amount of CO2 in the atmosphere would be reduced.

Cost

Cost estimates for BECCS range from $60-$250 per ton of CO2. [23]

It was estimated that electrogeochemical methods of combining saline water electrolysis with mineral weathering powered by non-fossil fuel-derived electricity could, on average, increase both energy generation and CO2 removal by more than 50 times relative to BECCS, at equivalent or even lower cost, but further research is needed to develop such methods. [24]

Technology

The main technology for CO2 capture from biotic sources generally employs the same technology as carbon dioxide capture from conventional fossil fuel sources. [25] Broadly, three different types of technologies exist: post-combustion, pre-combustion, and oxy-fuel combustion. [26]

Oxy-combustion

Overview of oxy-fuel combustion for carbon capture from biomass, showing the key processes and stages; some purification is also likely to be required at the dehydration stage. Oxy-combust BECCS.jpg
Overview of oxy‐fuel combustion for carbon capture from biomass, showing the key processes and stages; some purification is also likely to be required at the dehydration stage.

Oxy‐fuel combustion has been a common process in the glass, cement and steel industries. It is also a promising technological approach for CCS. In oxy‐fuel combustion, the main difference from conventional air firing is that the fuel is burned in a mixture of O2 and recycled flue gas. The O2 is produced by an air separation unit (ASU), which removes the atmospheric N2 from the oxidizer stream. By removing the N2 upstream of the process, a flue gas with a high concentration of CO2 and water vapor is produced, which eliminates the need for a post‐combustion capture plant. The water vapor can be removed by condensation, leaving a product stream of relatively high‐purity CO2 which, after subsequent purification and dehydration, can be pumped to a geological storage site. [27]

Key challenges of BECCS implementation using oxy-combustion are associated with the combustion process. For the high volatile content biomass, the mill temperature has to be kept at a low temperature to reduce the risk of fire and explosion. In addition, the flame temperature is lower. Therefore, the concentration of oxygen needs to be increased up to 27-30%. [27]

Pre-combustion

"Pre-combustion carbon capture" describes processes that capture CO2 before generating energy. This is often accomplished in five operating stages: oxygen generation, syngas generation, CO2 separation, CO2 compression, and power generation. The fuel first goes through a gasification process by reacting with oxygen to form a stream of CO and H2, which is syngas. The products will then go through a water-gas shift reactor to form CO2 and H2. The CO2 that is produced will then be captured, and the H2, which is a clean source, will be used for combustion to generate energy. [28] The process of gasification combined with syngas production is called Integrated Gasification Combined Cycle (IGCC). An Air Separation Unit (ASU) can serve as the oxygen source, but some research has found that with the same flue gas, oxygen gasification is only slightly better than air gasification. Both have a thermal efficiency of roughly 70% using coal as the fuel source. [27] Thus, the use of an ASU is not really necessary in pre-combustion.

Biomass is considered "sulfur-free" as a fuel for the pre-combustion capture. However, there are other trace elements in biomass combustion such as K and Na that could accumulate in the system and finally cause the degradation of the mechanical parts. [27] Thus, further developments of the separation techniques for those trace elements are needed. And also, after the gasification process, CO2 takes up to 13% - 15.3% by mass in the syngas stream for biomass sources, while it is only 1.7% - 4.4% for coal. [27] This limit the conversion of CO to CO2 in the water gas shift, and the production rate for H2 will decrease accordingly. However, the thermal efficiency of the pre-combustion capture using biomass resembles that of coal which is around 62% - 100%. Some research found that using a dry system instead of a biomass/water slurry fuel feed was more thermally efficient and practical for biomass. [27]

Post-combustion

In addition to pre-combustion and oxy-fuel combustion technologies, post-combustion is a promising technology which can be used to extract CO2 emission from biomass fuel resources. During the process, CO2 is separated from the other gases in the flue gas stream after the biomass fuel is burnt and undergo separation process. Because it has the ability to be retrofitted to some existing power plants such as steam boilers or other newly built power stations, post-combustion technology is considered as a better option than pre-combustion technology. According to the fact sheets U.S. CONSUMPTION OF BIO-ENERGY WITH CARBON CAPTURE AND STORAGE released in March 2018, the efficiency of post-combustion technology is expected to be 95% while pre-combustion and oxy-combustion capture CO2 at an efficient rate of 85% and 87.5% respectively. [29]

Development for current post-combustion technologies has not been entirely done due to several problems. One of the major concerns using this technology to capture carbon dioxide is the parasitic energy consumption. [30] If the capacity of the unit is designed to be small, the heat loss to the surrounding is great enough to cause too many negative consequences. Another challenge of post-combustion carbon capture is how to deal with the mixture's components in the flue gases from initial biomass materials after combustion. The mixture consists of a high amount of alkali metals, halogens, acidic elements, and transition metals which might have negative impacts on the efficiency of the process. Thus, the choice of specific solvents and how to manage the solvent process should be carefully designed and operated.

Biomass feedstocks

Biomass sources used in BECCS include agricultural residues & waste, forestry residue & waste, industrial & municipal wastes, and energy crops specifically grown for use as fuel. [31] Current BECCS projects capture CO2 from ethanol bio-refinery plants and municipal solid waste (MSW) recycling center.

A variety of challenges must be faced to ensure that biomass-based carbon capture is feasible and carbon neutral. Biomass stocks require availability of water and fertilizer inputs, which themselves exist at a nexus of environmental challenges in terms of resource disruption, conflict, and fertilizer runoff. A second major challenge is logistical: bulky biomass products require transportation to geographical features that enable sequestration. [32]

Projects in 2017

As of 2017, there had been 23 BECCS projects around the world, with the majority in North America and Europe. [27] [33] Today,[ when? ] there are only 6 projects in operation, capturing CO2 from ethanol bio-refinery plants and MSW recycling centers.

At ethanol plants

Illinois Industrial Carbon Capture and Storage (IL-CCS) is one of the milestones, being the first industrial-scaled BECCS project in the early 21st century. Located in Decatur, Illinois, USA, IL-CCS captures CO2 from Archer Daniels Midland ethanol plant. The captured CO2 is then injected under the deep saline formation at Mount Simon Sandstone. IL-CCS consists of 2 phases. The pilot project was implemented from 11/2011 to 11/2014 at a capital cost of around 84 million US dollars. Over the 3-year period, it successfully captured and sequestered 1 million tonne of CO2 from the ADM plant to the aquifer. No leaking of CO2 from the injection zone was found during this period. The project is still being monitored for future reference. Phase 2 has been in operation since 11/2017 and also uses the same injection zone at Mount Simon Sandstone at a capital cost of about 208 million US dollars including 141 million US dollar fund from the Department of Energy. Phase 2 has capturing capacity about 3 time larger than the pilot project. Annually, IL-CCS can capture more than 1 million tonne of CO2. As of 2019, with the largest of capturing capacity, IL-CCS was the largest BECCS project in the world. [34] [35] [36]

In addition to the IL-CCS project, there are about three more projects that capture CO2 from the ethanol plant at smaller scales. For example, Arkalon in Kansas, USA can capture 0.18-0.29 MtCO2/yr, OCAP in the Netherlands can capture about 0.1-0.3 MtCO2/yr, and Husky Energy in Canada can capture 0.09-0.1 MtCO2/yr.[ citation needed ]

At Municipal Solid Waste recycling centers

Currently,[ when? ] there are 2 models in Europe are designed to capture CO2 from the processing of Municipal Solid Waste. The Klemetsrud Plant at Oslo, Norway use biogenic municipal solid waste to generate 175 GWh and capture 315 Ktonne of CO2 each year. It uses absorption technology with Aker Solution Advanced Amine solvent as a CO2 capture unit. Similarly, the ARV Duiven in the Netherlands uses the same technology, but it captures less CO2 than the previous model. ARV Duiven generates around 126 GWh and only capture 50 Ktonne of CO2 each year.[ citation needed ]

Techno-economics of BECCS and the TESBiC Project

The largest and most detailed techno-economic assessment of BECCS was carried out by cmcl innovations and the TESBiC [37] group (Techno-Economic Study of Biomass to CCS) in 2012. This project recommended the most promising set of biomass fueled power generation technologies coupled with carbon capture and storage (CCS). The project outcomes lead to a detailed “biomass CCS roadmap” for the U.K..

Challenges

Environmental considerations

Some of the environmental considerations and other concerns about the widespread implementation of BECCS are similar to those of CCS. However, much of the critique towards CCS is that it may strengthen the dependency on depletable fossil fuels and environmentally invasive coal mining. This is not the case with BECCS, as it relies on renewable biomass. There are however other considerations which involve BECCS and these concerns are related to the possible increased use of biofuels. Biomass production is subject to a range of sustainability constraints, such as: scarcity of arable land and fresh water, loss of biodiversity, competition with food production, deforestation and scarcity of phosphorus. [38] It is important to make sure that biomass is used in a way that maximizes both energy and climate benefits. There has been criticism to some suggested BECCS deployment scenarios, where there would be a very heavy reliance on increased biomass input. [39]

Large areas of land would be required to operate BECCS on an industrial scale. To remove 10 billion tonnes of CO2, upwards of 300 million hectares of land area (larger than India) would be required. [23] As a result, BECCS risks using land that could be better suited to agriculture and food production, especially in developing countries.

These systems may have other negative side effects. There is however presently no need to expand the use of biofuels in energy or industry applications to allow for BECCS deployment. There is already today considerable emissions from point sources of biomass derived CO2, which could be utilized for BECCS. Though, in possible future bioenergy system upscaling scenarios, this may be an important consideration.

Upscaling BECCS would require a sustainable supply of biomass - one that does not challenge land, water, or food security. Using bioenergy crops as feedstock will not only cause sustainability concerns but also require the use of more fertilizer leading to soil contamination and water pollution.[ citation needed ] Moreover, crop yield is generally subjected to climate condition, i.e. the supply of this bio-feedstock can be hard to control. Bioenergy sector must also expand to meet the supply level of biomass. Expanding bioenergy would require technical and economic development accordingly.

Technical challenges

A challenge for applying BECCS technology, as with other carbon capture and storage technologies, is to find suitable geographic locations to build combustion plant and to sequester captured CO2. If biomass sources are not close by the combustion unit, transporting biomass emits CO2 offsetting the amount of CO2 captured by BECCS. BECCS also face technical concerns about efficiency of burning biomass. While each type of biomass has a different heating value, biomass in general is a low-quality fuel. Thermal conversion of biomass typically has an efficiency of 20-27%. [40] For comparison, coal-fired plants have an efficiency of about 37%. [41]

BECCS also faces a question whether the process is actually energy positive. Low energy conversion efficiency, energy-intensive biomass supply, combined with the energy required to power the CO2 capture and storage unit impose energy penalty on the system. This might lead to a low power generation efficiency. [42]


Alternative biomass sources

SourceCO2 SourceSector
Ethanol production Fermentation of biomass such as sugarcane, wheat or corn releases CO2 as a by-product.Industry
Pulp and paper mills

Cement production

Industry
Biogas productionIn the biogas upgrading process, CO2 is separated from the methane to produce a higher quality gas.Industry
Electrical power plantsCombustion of biomass or biofuel in steam or gas powered generators releases CO2 as a by-product.Energy
Heat power plantsCombustion of biofuel for heat generation releases CO2 as a by-product. Usually used for district heating.Energy

Agricultural and forestry residues

Globally, 14 Gt of forestry residue and 4.4 Gt residues from crop production (mainly barley, wheat, corn, sugarcane and rice) are generated every year. This is a significant amount of biomass which can be combusted to generate 26 EJ/year and achieve a 2.8 Gt of negative CO2 emission through BECCS. Utilizing residues for carbon capture will provide social and economic benefits to rural communities. Using waste from crops and forestry is a way to avoid the ecological and social challenges of BECCS. [43]

Among the forest bioenergy strategies being promoted, forest residue gasification for electricity production has gained policy traction in many developing countries because of the abundance of forest biomass, and their affordability, given that they are a by-products of conventional forestry functioning. [44] Additionally, unlike the sporadic nature of wind and solar, forest residue gasification for electricity can be uninterrupted, and modified to meet switch in energy demand. Forest industries are well positioned to play a prominent role in facilitating the adoption and upscale of forest bioenergy strategies in response to energy security and climate change challenges. [44] However, the economic costs of forest residue utilization for bioelectricity production and its potential financial impact on conventional forestry operations are poorly represented in forest bioenergy studies. Exploring these opportunities, particularly in developing country contexts can be buttressed by investigations that assess the financial feasibility of joint production for timber and bioelectricity. [44]

Despite the growing policy directives and mandates to produce electricity from woody biomass, the uncertainty around the financial feasibility and risks to investors continue to impede the transition to this renewable energy pathway, particularly in developing countries where the demand are the highest. This is because investments in forest bioenergy projects are exposed to high levels of financial risks. The high capital costs, operation costs, and maintenance costs of harvest residue-based gasification plant and their associated risks can keep the potential investor from investing in a forest-based bioelectricity project. [44]

Municipal solid waste

Municipal solid waste (MSW) is one of the newly developed sources of biomass. [45] Two current BECCS plants are using MSW as feedstocks. Waste collected from daily life is recycled via incineration waste treatment process. Waste goes through high temperature thermal treatment and the heat generated from combusting organic part of waste is used to generate electricity. CO2 emitted from this process is captured through absorption using MEA.[ clarification needed ] For every 1 kg of waste combusted, 0.7 kg of negative CO2 emission is achieved. Utilizing solid waste also have other environmental benefits. [43]

Co-firing coal with biomass

As of 2017 there were roughly 250 cofiring plants in the world, including 40 in the US. [46] Biomass cofiring with coal has efficiency near those of coal combustion. [41] Instead of co-firing, full conversion from coal to biomass of one or more generating units in a plant may be preferred. [47]

Policy

Based on the Kyoto Protocol agreement, carbon capture and storage projects were not applicable as an emission reduction tool to be used for the Clean Development Mechanism (CDM) or for Joint Implementation (JI) projects. [48] As of 2006, there had been growing support to have fossil CCS and BECCS included in the protocol and the Paris Agreement. Accounting studies on how this could be implemented, including BECCS, have also been done. [49]

European Union

There were policies to incentivice to use bioenergy such as Renewable Energy Directive (RED) and Fuel Quality Directive (FQD), which require 20% of total energy consumption to be based on biomass, bioliquids and biogas by 2020. [50]

Sweden

The Swedish Energy Agency was commissioned by the Swedish government to design a Swedish support system for BECCS to be implemented by 2022. [51]

United Kingdom

In 2018 the Committee on Climate Change recommended that aviation biofuels should provide up to 10% of total aviation fuel demand by 2050, and that all aviation biofuels should be produced with CCS as soon as the technology is available. [52] :159

United States

In 2018, the US congress increased and extended the section 45Q tax credit for sequestration of carbon oxides, a top priority of carbon capture and sequestration (CCS) supporters for several years. It increased $25.70 to $50 tax credit per tonnes of CO2 for secure geological storage and $15.30 to $35 tax credit per tonne of CO2 used in enhanced oil recovery. [53]

Public perception

Limited studies have investigated public perceptions of BECCS.[ citation needed ] Of those studies, most originate from developed countries in the northern hemisphere and therefore may not represent a worldwide view.

In a 2018 study involving online panel respondents from the United Kingdom, United States, Australia, and New Zealand, respondents showed little prior awareness of BECCS technologies. Measures of respondents perceptions suggest that the public associate BECCS with a balance of both positive and negative attributes. Across the four countries, 45% of the respondents indicated they would support small scale trials of BECCS, whereas only 21% were opposed. BECCS was moderately preferred among other methods of carbon dioxide removal like direct air capture or enhanced weathering, and greatly preferred over methods of solar radiation management. [54]

See also

Related Research Articles

<span class="mw-page-title-main">Gasification</span> Form of energy conversion

Gasification is a process that converts biomass- or fossil fuel-based carbonaceous materials into gases, including as the largest fractions: nitrogen (N2), carbon monoxide (CO), hydrogen (H2), and carbon dioxide (CO2). This is achieved by reacting the feedstock material at high temperatures (typically >700 °C), without combustion, via controlling the amount of oxygen and/or steam present in the reaction. The resulting gas mixture is called syngas (from synthesis gas) or producer gas and is itself a fuel due to the flammability of the H2 and CO of which the gas is largely composed. Power can be derived from the subsequent combustion of the resultant gas, and is considered to be a source of renewable energy if the gasified compounds were obtained from biomass feedstock.

<span class="mw-page-title-main">Fossil fuel power station</span> Facility that burns fossil fuels to produce electricity

A fossil fuel power station is a thermal power station which burns a fossil fuel, such as coal or natural gas, to produce electricity. Fossil fuel power stations have machinery to convert the heat energy of combustion into mechanical energy, which then operates an electrical generator. The prime mover may be a steam turbine, a gas turbine or, in small plants, a reciprocating gas engine. All plants use the energy extracted from the expansion of a hot gas, either steam or combustion gases. Although different energy conversion methods exist, all thermal power station conversion methods have their efficiency limited by the Carnot efficiency and therefore produce waste heat.

<span class="mw-page-title-main">Bioenergy</span> Renewable energy made from biomass

Bioenergy is a type of renewable energy that is derived from plants and animal waste. The biomass that is used as input materials consists of recently living organisms, mainly plants. Thus, fossil fuels are not regarded as biomass under this definition. Types of biomass commonly used for bioenergy include wood, food crops such as corn, energy crops and waste from forests, yards, or farms.

<span class="mw-page-title-main">Coal pollution mitigation</span>

Coal pollution mitigation, sometimes labeled as clean coal, is a series of systems and technologies that seek to mitigate health and environmental impact of burning coal for energy. Burning coal releases harmful substances, including mercury, lead, sulfur dioxide (SO2), nitrogen oxides (NOx), and carbon dioxide (CO2), contributing to air pollution, acid rain, and greenhouse gas emissions. Methods include flue-gas desulfurization, selective catalytic reduction, electrostatic precipitators, and fly ash reduction focusing on reducing the emissions of these harmful substances. These measures aim to reduce coal's impact on human health and the environment.

<span class="mw-page-title-main">Carbon capture and storage</span> Collecting carbon dioxide from industrial emissions

Carbon capture and storage (CCS) is a process in which a relatively pure stream of carbon dioxide (CO2) from industrial sources is separated, treated and transported to a long-term storage location. For example, the burning of fossil fuels or biomass results in a stream of CO2 that could be captured and stored by CCS. Usually the CO2 is captured from large point sources, such as a chemical plant or a bioenergy plant, and then stored in a suitable geological formation. The aim is to reduce greenhouse gas emissions and thus mitigate climate change. For example, CCS retrofits for existing power plants can be one of the ways to limit emissions from the electricity sector and meet the Paris Agreement goals.

An integrated gasification combined cycle (IGCC) is a technology using a high pressure gasifier to turn coal and other carbon based fuels into pressurized gas—synthesis gas (syngas). It can then remove impurities from the syngas prior to the electricity generation cycle. Some of these pollutants, such as sulfur, can be turned into re-usable byproducts through the Claus process. This results in lower emissions of sulfur dioxide, particulates, mercury, and in some cases carbon dioxide. With additional process equipment, a water-gas shift reaction can increase gasification efficiency and reduce carbon monoxide emissions by converting it to carbon dioxide. The resulting carbon dioxide from the shift reaction can be separated, compressed, and stored through sequestration. Excess heat from the primary combustion and syngas fired generation is then passed to a steam cycle, similar to a combined cycle gas turbine. This process results in improved thermodynamic efficiency, compared to conventional pulverized coal combustion.

<span class="mw-page-title-main">Waste-to-energy</span> Process of generating energy from the primary treatment of waste

Waste-to-energy (WtE) or energy-from-waste (EfW) is the process of generating energy in the form of electricity and/or heat from the primary treatment of waste, or the processing of waste into a fuel source. WtE is a form of energy recovery. Most WtE processes generate electricity and/or heat directly through combustion, or produce a combustible fuel commodity, such as methane, methanol, ethanol or synthetic fuels, often derived from the product syngas.

<span class="mw-page-title-main">Biochar</span> Lightweight black residue, made of carbon and ashes, after pyrolysis of biomass

Biochar is the lightweight black residue, made of carbon and ashes, remaining after the pyrolysis of biomass, and is a form of charcoal. Biochar is defined by the International Biochar Initiative as "the solid material obtained from the thermochemical conversion of biomass in an oxygen-limited environment". Biochar is a stable solid that is rich in pyrogenic carbon and can endure in soil for thousands of years.

<span class="mw-page-title-main">Biomass (energy)</span> Biological material used as a renewable energy source

Biomass, in the context of energy production, is matter from recently living organisms which is used for bioenergy production. Examples include wood, wood residues, energy crops, agricultural residues including straw, and organic waste from industry and households. Wood and wood residues is the largest biomass energy source today. Wood can be used as a fuel directly or processed into pellet fuel or other forms of fuels. Other plants can also be used as fuel, for instance maize, switchgrass, miscanthus and bamboo. The main waste feedstocks are wood waste, agricultural waste, municipal solid waste, and manufacturing waste. Upgrading raw biomass to higher grade fuels can be achieved by different methods, broadly classified as thermal, chemical, or biochemical.

<span class="mw-page-title-main">Virgin Earth Challenge</span> Competition for permanent removal of greenhouse gases

The Virgin Earth Challenge was a competition offering a $25 million prize for whoever could demonstrate a commercially viable design which results in the permanent removal of greenhouse gases out of the Earth's atmosphere to contribute materially in global warming avoidance. The prize was conceived by Richard Branson, and was announced in London on 9 February 2007 by Branson and former US Vice President Al Gore.

Second-generation biofuels, also known as advanced biofuels, are fuels that can be manufactured from various types of non-food biomass. Biomass in this context means plant materials and animal waste used especially as a source of fuel.

Carbon capture and storage (CCS) is a technology that can capture carbon dioxide CO2 emissions produced from fossil fuels in electricity, industrial processes which prevents CO2 from entering the atmosphere. Carbon capture and storage is also used to sequester CO2 filtered out of natural gas from certain natural gas fields. While typically the CO2 has no value after being stored, Enhanced Oil Recovery uses CO2 to increase yield from declining oil fields.

The milestones for carbon capture and storage show the lack of commercial scale development and implementation of CCS over the years since the first carbon tax was imposed.

<span class="mw-page-title-main">Carbon dioxide removal</span> Removal of atmospheric carbon dioxide through human activity

Carbon dioxide removal (CDR) is a process in which carbon dioxide is removed from the atmosphere by deliberate human activities and durably stored in geological, terrestrial, or ocean reservoirs, or in products. This process is also known as carbon removal, greenhouse gas removal or negative emissions. CDR is more and more often integrated into climate policy, as an element of climate change mitigation strategies. Achieving net zero emissions will require first and foremost deep and sustained cuts in emissions, and then—in addition—the use of CDR. In the future, CDR may be able to counterbalance emissions that are technically difficult to eliminate, such as some agricultural and industrial emissions.

<span class="mw-page-title-main">Microbial electrolysis carbon capture</span>

Microbial electrolysis carbon capture (MECC) is a carbon capture technique using microbial electrolysis cells during wastewater treatment. MECC results in net negative carbon emission wastewater treatment by removal of carbon dioxide (CO2) during the treatment process in the form of calcite (CaCO3), and production of profitable H2 gas.

<span class="mw-page-title-main">Carbon capture and utilization</span>

Carbon capture and utilization (CCU) is the process of capturing carbon dioxide (CO2) from industrial processes and transporting it via pipelines to where one intends to use it in industrial processes.

<span class="mw-page-title-main">Direct air capture</span> Method of carbon capture from carbon dioxide in air

Direct air capture (DAC) is the use of chemical or physical processes to extract carbon dioxide directly from the ambient air. If the extracted CO2 is then sequestered in safe long-term storage, the overall process will achieve carbon dioxide removal and be a "negative emissions technology" (NET).

<span class="mw-page-title-main">Kenneth Möllersten</span> Swedish researcher

Kenneth Karl Mikael Möllersten is a Swedish researcher. He holds a PhD in chemical engineering and an MSc in mechanical engineering, both from the Royal Institute of Technology (KTH), Stockholm, Sweden. Möllersten is a consultant and researcher at IVL Swedish Environmental Research Institute, was previously affiliated as a researcher with Mälardalen University and is currently affiliated with KTH.

Biochar carbon removal (BCR) is a negative emissions technology. It involves the production of biochar through pyrolysis of residual biomass and the subsequent application of the biochar in soils or durable materials. The carbon dioxide sequestered by the plants used for the biochar production is therewith stored for several hundreds of years, which creates carbon sinks.

References

  1. 1 2 Obersteiner, M. (2001). "Managing Climate Risk". Science. 294 (5543): 786–7. doi:10.1126/science.294.5543.786b. PMID   11681318. S2CID   34722068.
  2. 1 2 National Academies of Sciences, Engineering (2018-10-24). Negative Emissions Technologies and Reliable Sequestration: A Research Agenda. doi:10.17226/25259. ISBN   978-0-309-48452-7. PMID   31120708. S2CID   134196575. Archived from the original on 2020-05-25. Retrieved 2020-02-22.
  3. Deprez, Alexandra; Leadley, Paul; Dooley, Kate; Williamson, Phil; Cramer, Wolfgang; Gattuso, Jean-Pierre; Rankovic, Aleksandar; Carlson, Eliot L.; Creutzig, Felix (2024-02-02). "Sustainability limits needed for CO 2 removal". Science. 383 (6682): 484–486. doi:10.1126/science.adj6171. ISSN   0036-8075. PMID   38301011. S2CID   267365599.
  4. Smith, Pete; Porter, John R. (July 2018). "Bioenergy in the IPCC Assessments". GCB Bioenergy. 10 (7): 428–431. Bibcode:2018GCBBi..10..428S. doi: 10.1111/gcbb.12514 . hdl: 2164/10480 .
  5. "BECCS 2019 perspective" (PDF). Archived (PDF) from the original on 2020-03-31. Retrieved 2019-06-11.
  6. Rhodes, James S.; Keith, David W. (2008). "Biomass with capture: Negative emissions within social and environmental constraints: An editorial comment". Climatic Change. 87 (3–4): 321–8. Bibcode:2008ClCh...87..321R. doi: 10.1007/s10584-007-9387-4 .
  7. Fajardy, Mathilde; Köberle, Alexandre; Mac Dowell, Niall; Fantuzzi, Andrea (2019). "BECCS deployment: a reality check" (PDF). Grantham Institute Imperial College London.
  8. Möllersten, Kenneth; Yan, Jinyue (2001). "Economic evaluation of biomass-based energy systems with CO2 capture and sequestration in kraft pulp mills - The influence of the price of CO2 emission quota". World Resource Review. 13 (4): 509–525.
  9. Read, Peter; Lermit, Jonathan (2005). "Bio-energy with carbon storage (BECS): A sequential decision approach to the threat of abrupt climate change". Energy. 30 (14): 2654. Bibcode:2005Ene....30.2654R. doi:10.1016/j.energy.2004.07.003.
  10. Khanna, Richa; Bera, Anurag (2022), "Bioenergy", in Baskar, Chinnappan; Ramakrishna, Seeram; Daniela La Rosa, Angela (eds.), Encyclopedia of Green Materials, Singapore: Springer Nature, pp. 1–7, doi:10.1007/978-981-16-4921-9_107-1, ISBN   978-981-16-4921-9 , retrieved 2023-09-11
  11. Möllersten, Kenneth; Yan, Jinyue; r. Moreira, Jose (2003). "Potential market niches for biomass energy with CO2 capture and storage—Opportunities for energy supply with negative CO2 emissions". Biomass and Bioenergy. 25 (3): 273. doi:10.1016/S0961-9534(03)00013-8.
  12. Belletti, Beatrice; Bernardi, Patrizia; Fornoni, Paolo; Malcevschi, Alessio; Sirico, Alice (2024). "Development of Sustainable Cementitious Materials by Using Biochar". In di Prisco, Marco; Menegotto, Marco (eds.). Proceedings of Italian Concrete Conference 2020/21. Lecture Notes in Civil Engineering. Vol. 351. Cham: Springer Nature Switzerland. pp. 427–440. doi:10.1007/978-3-031-37955-0_31. ISBN   978-3-031-37955-0.
  13. "How cement may yet help slow global warming". The Economist. 2021-11-03. ISSN   0013-0613 . Retrieved 2022-03-18.
  14. g. Cassman, Kenneth; Liska, Adam J. (2007). "Food and fuel for all: Realistic or foolish?". Biofuels, Bioproducts and Biorefining. 1: 18–23. doi: 10.1002/bbb.3 . Archived from the original on 2020-05-29. Retrieved 2019-12-14.
  15. Möllersten, K.; Yan, J.; Westermark, M. (2003). "Potential and cost-effectiveness of CO2 reductions through energy measures in Swedish pulp and paper mills". Energy. 28 (7): 691. doi:10.1016/S0360-5442(03)00002-1. S2CID   54647011.
  16. 1 2 "How cement may yet help slow global warming". The Economist. 2021-11-04. ISSN   0013-0613. Archived from the original on 2021-11-10. Retrieved 2021-11-10.
  17. 1 2 IPCC, (2005)"Chapter 5: Underground geological storage" IPCC Special Report on Carbon dioxide Capture and Storage. Archived 2017-05-13 at the Wayback Machine Prepared by Working Group III of the Intergovernmental Panel on Climate Change [Metz, B., O. Davidson, H. C. De Coninck, M. Loos, and L. A. Meyer (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp195-276.
  18. "Global Status of BECCS Projects 2010". Biorecro AB, Global CCS Institute. 2010. Archived from the original on 2014-05-09. Retrieved 2011-12-09.
  19. 1 2 Hare, Bill; Meinshausen, Malte (2006). "How Much Warming are We Committed to and How Much can be Avoided?". Climatic Change. 75 (1–2): 111–149. Bibcode:2006ClCh...75..111H. doi:10.1007/s10584-005-9027-9. S2CID   154192106.
  20. Fisher, Brian; Nakicenovic, Nebojsa; Alfsen, Knut; Morlot, Jan Corfee; de la Chesnaye, Francisco; Hourcade, Jean-Charles; Jiang, Kejun; Kainuma, Mikiko; La Rovere, Emilio (2007-11-12). "Issues related to mitigation in the long-term context" (PDF). In Metz, Bert (ed.). Climate Change 2007: Mitigation of Climate Change. Working Group III contribution to the Fourth Assessment Report of the IPCC. pp. 169–250. ISBN   978-0-521-88011-4. Archived (PDF) from the original on 2018-09-22. Retrieved 2009-05-12.
  21. Azar, Christian; Lindgren, Kristian; Larson, Eric; Möllersten, Kenneth (2006). "Carbon Capture and Storage from Fossil Fuels and Biomass – Costs and Potential Role in Stabilizing the Atmosphere". Climatic Change. 74 (1–3): 47–79. Bibcode:2006ClCh...74...47A. doi:10.1007/s10584-005-3484-7. S2CID   4850415.
  22. Lindfeldt, Erik G.; Westermark, Mats O. (2008). "System study of carbon dioxide (CO2) capture in bio-based motor fuel production". Energy. 33 (2): 352. Bibcode:2008Ene....33..352L. doi:10.1016/j.energy.2007.09.005.
  23. 1 2 "Extracting carbon from nature can aid climate but will be costly: U.N." Reuters. 2017-03-26. Archived from the original on 2019-03-29. Retrieved 2017-05-02.
  24. Rau, G. H., Willauer, H. D., & Ren, Z. J. (2018). The global potential for converting renewable electricity to negative-CO 2-emissions hydrogen. Nature Climate Change, 8(7), 621. https://doi.org/10.1038/s41558-018-0203-0
  25. Hossain, Eklas; Petrovic, Slobodan (2021), Hossain, Eklas; Petrovic, Slobodan (eds.), "Bioenergy", Renewable Energy Crash Course: A Concise Introduction, Cham: Springer International Publishing, pp. 43–51, doi:10.1007/978-3-030-70049-2_5, ISBN   978-3-030-70049-2, S2CID   241513824 , retrieved 2023-09-11
  26. IPCC, (2005)"Chapter 3: Capture of CO2" IPCC Special Report on Carbon dioxide Capture and Storage. Archived 2017-05-17 at the Wayback Machine Prepared by Working Group III of the Intergovernmental Panel on Climate Change [Metz, B., O. Davidson, H. C. De Coninck, M. Loos, and L. A. Meyer (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp 105-178.
  27. 1 2 3 4 5 6 7 8 Gough, Clair (2018). Biomass Energy with Carbon Capture and Storage (BECCS): Unlocking Negative Emissions. UK: John Wiley & Sons Ltd. ISBN   9781119237686.
  28. Jansen, Daniel (27 July 2015). "Pre-combustion CO2 capture". International Journal of Greenhouse Gas Control. 40: 167–187. doi:10.1016/j.ijggc.2015.05.028. S2CID   106789407. Archived from the original on 22 November 2021. Retrieved 13 July 2019.
  29. Thangaraj, P; Okoye, S; Gordon, B; Zilberman, D; Hochman, G (March 12, 2018). "FACTSHEET: BIOENERGY WITH CARBON CAPTURE AND STORAGE".{{cite journal}}: Cite journal requires |journal= (help)
  30. Edström, Elin; Öberg, Christoffer. "Review of Bioenergy with Carbon Capture and Storage (BECCS) and Possibilities of Introducing a Small-Scale Unit".{{cite journal}}: Cite journal requires |journal= (help)
  31. Dubey, Rachana; Gupta, Dipak Kumar; Radhakrishnan, Sheetal K.; Gupta, Chandan Kumar; Surendhar, P.; Choudhary, A. K.; Upadhyaya, A. (2023), Rakshit, Amitava; Biswas, Asim; Sarkar, Deepranjan; Meena, Vijay Singh (eds.), "Biomass: Sustainable Energy Solution from Agriculture", Handbook of Energy Management in Agriculture, Singapore: Springer Nature, pp. 1–29, doi:10.1007/978-981-19-7736-7_11-1, ISBN   978-981-19-7736-7 , retrieved 2023-09-11
  32. Buck, Holly Jean (2019). After geoengineering : climate tragedy, repair, and restoration. London. pp. 62–63. ISBN   9781788730365.{{cite book}}: CS1 maint: location missing publisher (link)
  33. "Biomass with carbon capture and storage" (PDF). ieaghg.org. Archived (PDF) from the original on 2018-04-04. Retrieved 2018-12-06.
  34. "DOE Announces Major Milestone Reached for Illinois Industrial CCS Project" (Press release). U.S. Department of Energy. Archived from the original on 2018-12-07. Retrieved 2018-11-25.
  35. Briscoe, Tony (November 23, 2017). "Decatur plant at forefront of push to pipe carbon emissions underground, but costs raise questions". Chicago Tribune. Archived from the original on 2019-11-05. Retrieved 2019-11-05.
  36. "Archer Daniels Midland Company". U.S. Department of Energy, Office of Fossil Energy. Archived from the original on 2019-11-05. Retrieved 2019-11-05.
  37. "The TESBiC Project". Archived from the original on 2012-11-06. Retrieved 2013-01-18.[ full citation needed ]
  38. Ignacy, S.: (2007) "The Biofuels Controversy" Archived 2011-06-07 at the Wayback Machine , United Nations Conference on Trade and Development, 12
  39. "Carbon-negative bioenergy to cut global warming could drive deforestation: An interview on BECS with Biopact's Laurens Rademakers". Mongabay . November 6, 2007. Archived from the original on 2018-08-19. Retrieved 2018-08-19.
  40. Baxter, Larry (July 2005). "Biomass-coal co-combustion: opportunity for affordable renewable energy". Fuel. 84 (10): 1295–1302. CiteSeerX   10.1.1.471.1281 . doi:10.1016/j.fuel.2004.09.023. ISSN   0016-2361.
  41. 1 2 "CCS Retrofit: Analysis of the Globally Installed Coal-Fired Power Plant Fleet". IEA Energy Papers. 2012-03-29. doi: 10.1787/5k9crztg40g1-en . ISSN   2079-2581.
  42. Bui, Mai; Fajardy, Mathilde; Mac Dowell, Niall (June 2017). "Bio-Energy with CCS (BECCS) performance evaluation: Efficiency enhancement and emissions reduction". Applied Energy. 195: 289–302. Bibcode:2017ApEn..195..289B. doi:10.1016/j.apenergy.2017.03.063. hdl: 10044/1/49332 . ISSN   0306-2619.
  43. 1 2 Pour, Nasim; Webley, Paul A.; Cook, Peter J. (July 2017). "A Sustainability Framework for Bioenergy with Carbon Capture and Storage (BECCS) Technologies". Energy Procedia. 114: 6044–6056. doi: 10.1016/j.egypro.2017.03.1741 . ISSN   1876-6102.
  44. 1 2 3 4 Ofoegbu, Chidiebere (2023-12-31). Yuan, Xiangzhou (ed.). "Feasibility assessment of harvest residue gasification for bioelectricity and its financial impact on conventional plantation forestry". Sustainable Environment. 9 (1). Bibcode:2023SusEn...906506O. doi: 10.1080/27658511.2023.2206506 . ISSN   2765-8511. Creative Commons by small.svg  This article incorporates textfrom this source, which is available under the CC BY 4.0 license.
  45. Wienchol, Paulina; Szlęk, Andrzej; Ditaranto, Mario (2020-05-01). "Waste-to-energy technology integrated with carbon capture – Challenges and opportunities". Energy. 198: 117352. Bibcode:2020Ene...19817352W. doi: 10.1016/j.energy.2020.117352 . hdl: 11250/2659562 . ISSN   0360-5442. S2CID   216486067.
  46. "Projects | Bioenergy Task 32". demoplants21.bioenergy2020.eu. IEA Bioenergy. Archived from the original on 2020-09-22. Retrieved 2020-04-22.
  47. "How to switch a power station off coal". Drax. 2018-08-22. Archived from the original on 2019-09-03. Retrieved 2019-06-11.
  48. "Emission Trading Scheme (EU ETS) from ec.europa.eu". Archived from the original on 2010-09-29. Retrieved 2009-09-10.
  49. Grönkvist, Stefan; Möllersten, Kenneth; Pingoud, Kim (2006). "Equal Opportunity for Biomass in Greenhouse Gas Accounting of CO2 Capture and Storage: A Step Towards More Cost-Effective Climate Change Mitigation Regimes". Mitigation and Adaptation Strategies for Global Change. 11 (5–6): 1083. Bibcode:2006MASGC..11.1083G. doi:10.1007/s11027-006-9034-9. S2CID   154172898.
  50. "Renewable energy directive". European Commission. 2014-07-16. Archived from the original on 2018-12-15. Retrieved 8 December 2018.
  51. "Promoting carbon dioxide removals: the Nordic case study". Climate Strategies. 2021-10-26. Archived from the original on 2021-11-05. Retrieved 2021-11-05.
  52. UK Committee on Climate Change (2018). Biomass in a low-carbon economy (PDF).
  53. "[USC04] 26 USC 45Q: Credit for carbon oxide sequestration". uscode.house.gov. Archived from the original on 2018-12-09. Retrieved 2018-12-08.
  54. Carlisle, Daniel P.; Feetham, Pamela M.; Wright, Malcolm J.; Teagle, Damon A. H. (2020-04-12). "The public remain uninformed and wary of climate engineering" (PDF). Climatic Change. 160 (2): 303–322. Bibcode:2020ClCh..160..303C. doi:10.1007/s10584-020-02706-5. ISSN   1573-1480. S2CID   215731777. Archived (PDF) from the original on 2021-06-14. Retrieved 2021-05-23.