Lipid emulsion

Last updated
A lipid emulsion (intralipid) 20% LipidEmulsion.JPG
A lipid emulsion (intralipid) 20%

Lipid emulsion or fat emulsion refers to an emulsion of fat for human intravenous use, to administer nutrients to critically-ill patients that cannot consume food. It is often referred to by the brand name of the most commonly used version, Intralipid, which is an emulsion containing soybean oil, egg phospholipids and glycerin, and is available in 10%, 20% and 30% concentrations. The 30% concentration is not approved for direct intravenous infusion, but should be mixed with amino acids and dextrose as part of a total nutrient admixture.

Contents

Medical uses

Nutrition

Intralipid and other balanced lipid emulsions provide essential fatty acids, linoleic acid (LA), an omega-6 fatty acid, alpha-linolenic acid (ALA), an omega-3 fatty acid. The emulsion is used as a component of intravenous nutrition for people who are unable to get nutrition via an oral diet. These nutrients are combined with the intention of administering parenteral nutrition, where nutrients are delivered in an alternative pathway other than the gastrointestinal tract.

Local anaesthetic toxicity

Lipid emulsions are effective in treating experimental models of severe cardiotoxicity from intravenous overdose of local anaesthetic drugs such as bupivacaine. [1] [2] [3] [4]

They have been effective in people unresponsive to the usual resuscitation methods. They have subsequently been used off-label in the treatment of overdose from other fat-soluble medications. [5]

Vehicle for other medications

Propofol is dissolved in a lipid emulsion for intravenous use. Sometimes etomidate (the vehicle for etomidate is propylene glycol) is supplied using a lipid emulsion as a vehicle. The possibility of lipid emulsions as an alternative drug delivery medium is under works.

History

Intravenous lipid emulsions have been used experimentally since at least the 19th century. An early product marketed in 1957 under the name Lipomul was briefly used in the United States but was subsequently withdrawn due to side effects. [6] Intralipid was invented by the Swedish physician and nutrition researcher Arvid Wretlind, and was approved for clinical use in Sweden in 1962. [7] In the United States, the Food and Drug Administration initially declined to approve the product due to prior experience with another fat emulsion. It was approved in the United States in 1972.

Research

Intralipid is also widely used in optical experiments to simulate the scattering properties of biological tissues. [8] Solutions of appropriate concentrations of intralipid can be prepared that closely mimic the response of human or animal tissue to light at wavelengths in the red and infrared ranges where tissue is highly scattering but has a rather low absorption coefficient.

Cardioprotective agent

Intralipid is currently being studied for its potential use as a cardioprotective agent, specifically as a treatment for ischemic reperfusion injury. The rapid return of myocardial blood supply is critical in order to save the ischemic heart, but it also has the potential to create injury due to oxidative damage (via reactive oxygen species) and calcium overload. [9] Myocardial damage with the resumption of blood flow after an ischemic event is termed “reperfusion injury”.

The mitochondrial permeability transition pore (mPTP) is normally closed during ischemia, but calcium overload and increased reactive oxygen species (ROS) with reperfusion open mPTP allowing hydrogen ions to flow from the mitochondrial matrix into the cytosol. The hydrogen flux disrupts the mitochondrial membrane potential and results in mitochondrial swelling, outer membrane rupture, and the release of pro-apoptotic factors. [9] [10] These changes impair mitochondrial energy production and drive cardiac myocyte apoptosis.

Intralipid (5mL/kg) provided five minutes before reperfusion delays the opening of mPTP in vivo rat models, making it a potential cardioprotective agent [11] Lou et al. (2014) found that the cardioprotection aspect of Intralipid is initiated by the accumulation of acylcarnitines in the mitochondria and involves inhibition of the electron transport chain, an increase in ROS production during early (3 min) reperfusion, and activation of the reperfusion injury salvage kinase pathway (RISK). [9] The mitochondrial accumulation of acylcarnitines (primarily palmitoyl-carnitine) inhibits the electron transport chain at complex IV, generating protective ROS. [12] The effects of ROS are both “site” and “time” sensitive, meaning that both will ultimately determine whether the ROS are beneficial or detrimental. [12] The generated ROS, which are formed from electrons leaking from the electron transport chain of the mitochondria, first act directly on mPTP to limit opening. [13] ROS then activate signalling pathways that act on the mitochondria to decrease mPTP opening and mediate protection. [13] Activation of the RISK pathway by ROS increases the phosphorylation of other pathways, such as phosphatidylinositol 3-kinase/Akt and extracellular-regulated kinase (ERK) pathways, [11] both of which are found in pools localized at the mitochondria. [14] The Akt and ERK pathways converge to alter glycogen synthase kinase-3 beta (GSK-3β) activity. Specifically, Akt and ERK phosphorylate GSK-3β, inactivating the enzyme, and inhibiting the opening of mPTP. [11] The mechanism by which GSK-3β inhibits the opening of the mPTP is controversial. Nishihara et al. (2007) proposed that it is achieved through interaction of GSK-3β with ANT subunit of mPTP, inhibiting the Cyp-D–ANT interaction, resulting in the inability of the mPTP to open. [15]

In a study by Rahman et al. (2011) Intralipid-treated rat hearts were found to required more calcium to open mPTP during ischemia-reperfusion. The cardiomyocytes are therefore, better able to tolerate the calcium overload, and increase the threshold for opening of the mPTP with the addition of Intralipid. [11]

Related Research Articles

<span class="mw-page-title-main">Ciclosporin</span> Chemical compound

Ciclosporin, also spelled cyclosporine and cyclosporin, is a calcineurin inhibitor, used as an immunosuppressant medication. It is taken orally or intravenously for rheumatoid arthritis, psoriasis, Crohn's disease, nephrotic syndrome, and in organ transplants to prevent rejection. It is also used as eye drops for keratoconjunctivitis sicca.

<span class="mw-page-title-main">Reperfusion injury</span> Tissue damage after return of blood supply following ischemia or hypoxia

Reperfusion injury, sometimes called ischemia-reperfusion injury (IRI) or reoxygenation injury, is the tissue damage caused when blood supply returns to tissue after a period of ischemia or lack of oxygen. The absence of oxygen and nutrients from blood during the ischemic period creates a condition in which the restoration of circulation results in inflammation and oxidative damage through the induction of oxidative stress rather than restoration of normal function.

<span class="mw-page-title-main">GSK-3</span> Class of enzymes

Glycogen synthase kinase 3 (GSK-3) is a serine/threonine protein kinase that mediates the addition of phosphate molecules onto serine and threonine amino acid residues. First discovered in 1980 as a regulatory kinase for its namesake, glycogen synthase (GS), GSK-3 has since been identified as a protein kinase for over 100 different proteins in a variety of different pathways. In mammals, including humans, GSK-3 exists in two isozymes encoded by two homologous genes GSK-3α (GSK3A) and GSK-3β (GSK3B). GSK-3 has been the subject of much research since it has been implicated in a number of diseases, including type 2 diabetes, Alzheimer's disease, inflammation, cancer, addiction and bipolar disorder.

The mitochondrial permeability transition pore is a protein that is formed in the inner membrane of the mitochondria under certain pathological conditions such as traumatic brain injury and stroke. Opening allows increase in the permeability of the mitochondrial membranes to molecules of less than 1500 Daltons in molecular weight. Induction of the permeability transition pore, mitochondrial membrane permeability transition, can lead to mitochondrial swelling and cell death through apoptosis or necrosis depending on the particular biological setting.

<span class="mw-page-title-main">Nicorandil</span> Chemical compound

Nicorandil is a vasodilatory drug used to treat angina.

An ATP-sensitive potassium channel is a type of potassium channel that is gated by intracellular nucleotides, ATP and ADP. ATP-sensitive potassium channels are composed of Kir6.x-type subunits and sulfonylurea receptor (SUR) subunits, along with additional components. KATP channels are found in the plasma membrane; however some may also be found on subcellular membranes. These latter classes of KATP channels can be classified as being either sarcolemmal ("sarcKATP"), mitochondrial ("mitoKATP"), or nuclear ("nucKATP").

<span class="mw-page-title-main">MAPK14</span> Protein-coding gene in the species Homo sapiens

Mitogen-activated protein kinase 14, also called p38-α, is an enzyme that in humans is encoded by the MAPK14 gene.

<span class="mw-page-title-main">SOD1</span> Protein-coding gene in the species Homo sapiens

Superoxide dismutase [Cu-Zn] also known as superoxide dismutase 1 or hSod1 is an enzyme that in humans is encoded by the SOD1 gene, located on chromosome 21. SOD1 is one of three human superoxide dismutases. It is implicated in apoptosis, familial amyotrophic lateral sclerosis and Parkinson's disease.

<span class="mw-page-title-main">SOD2</span> Enzyme

Superoxide dismutase 2, mitochondrial (SOD2), also known as manganese-dependent superoxide dismutase (MnSOD), is an enzyme which in humans is encoded by the SOD2 gene on chromosome 6. A related pseudogene has been identified on chromosome 1. Alternative splicing of this gene results in multiple transcript variants. This gene is a member of the iron/manganese superoxide dismutase family. It encodes a mitochondrial protein that forms a homotetramer and binds one manganese ion per subunit. This protein binds to the superoxide byproducts of oxidative phosphorylation and converts them to hydrogen peroxide and diatomic oxygen. Mutations in this gene have been associated with idiopathic cardiomyopathy (IDC), premature aging, sporadic motor neuron disease, and cancer.

<span class="mw-page-title-main">PRKCE</span> Protein-coding gene in the species Homo sapiens

Protein kinase C epsilon type (PKCε) is an enzyme that in humans is encoded by the PRKCE gene. PKCε is an isoform of the large PKC family of protein kinases that play many roles in different tissues. In cardiac muscle cells, PKCε regulates muscle contraction through its actions at sarcomeric proteins, and PKCε modulates cardiac cell metabolism through its actions at mitochondria. PKCε is clinically significant in that it is a central player in cardioprotection against ischemic injury and in the development of cardiac hypertrophy.

<span class="mw-page-title-main">VDAC2</span> Protein-coding gene in the species Homo sapiens

Voltage-dependent anion-selective channel protein 2 is a protein that in humans is encoded by the VDAC2 gene on chromosome 10. This protein is a voltage-dependent anion channel and shares high structural homology with the other VDAC isoforms. VDACs are generally involved in the regulation of cell metabolism, mitochondrial apoptosis, and spermatogenesis. Additionally, VDAC2 participates in cardiac contractions and pulmonary circulation, which implicate it in cardiopulmonary diseases. VDAC2 also mediates immune response to infectious bursal disease (IBD).

<span class="mw-page-title-main">VDAC3</span> Protein-coding gene in the species Homo sapiens

Voltage-dependent anion-selective channel protein 3 (VDAC3) is a protein that in humans is encoded by the VDAC3 gene on chromosome 8. The protein encoded by this gene is a voltage-dependent anion channel and shares high structural homology with the other VDAC isoforms. Nonetheless, VDAC3 demonstrates limited pore-forming ability and, instead, interacts with other proteins to perform its biological functions, including sperm flagella assembly and centriole assembly. Mutations in VDAC3 have been linked to male infertility, as well as Parkinson’s disease.

Reverse electron flow (also known as reverse electron transport) is a mechanism in microbial metabolism. Chemolithotrophs using an electron donor with a higher redox potential than NAD(P)+/NAD(P)H, such as nitrite or sulfur compounds, must use energy to reduce NAD(P)+. This energy is supplied by consuming proton motive force to drive electrons in a reverse direction through an electron transport chain and is thus the reverse process as forward electron transport. In some cases, the energy consumed in reverse electron transport is five times greater than energy gained from the forward process. Autotrophs can use this process to supply reducing power for inorganic carbon fixation.

Survivor Activating Factor Enhancement (SAFE) is a metabolic pathway. It is an intrinsic protective signaling programme to limit cell death activated by the heart. This pathway allows ischaemic postconditioning that helps protect against reperfusion injury. This path involves the activation of a transcription factor called signal transducer and activator of transcription 3 (STAT3). The SAFE pathway interacts with the reperfusion injury salvage kinase pathway to convey the ischemic postconditioning stimulus from the cell surface to the mitochondria, where many of the prosurvival and death signals appear to converge.

<span class="mw-page-title-main">Rottlerin</span> Chemical compound

Rottlerin (mallotoxin) is a polyphenol natural product isolated from the Asian tree Mallotus philippensis. Rottlerin displays a complex spectrum of pharmacology.

Diallyl trisulfide (DATS), also known as Allitridin, is an organosulfur compound with the formula S(SCH2CH=CH2)2. It is one of several compounds produced by hydrolysis of allicin, including diallyl disulfide and diallyl tetrasulfide; DATS is one of the most potent.

Cardioprotection includes all mechanisms and means that contribute to the preservation of the heart by reducing or even preventing myocardial damage. Cardioprotection encompasses several regimens that have shown to preserve function and viability of cardiac muscle cell tissue subjected to ischemic insult or reoxygenation. Cardioprotection includes strategies that are implemented before an ischemic event, during an ischemic event and after the event and during reperfusion. These strategies can be further stratified by performing the intervention locally or remotely, creating classes of conditioning known as remote ischemic PC (RIPC), remote ischemic PostC and remote ischemic PerC. Classical (local) preconditioning has an early phase with an immediate onset lasting 2–3 hours that protects against myocardial infarction. The early phase involves post-translational modification of preexisting proteins, brought about by the activation of G protein-coupled receptors as well as downstream MAPK's and PI3/Akt. These signaling events act on the ROS-generating mitochondria, activate PKCε and the Reperfusion Injury Salvage Kinase (RISK) pathway, preventing mitochondrial permeability transition pore (MTP) opening. The late phase with an onset of 12–24 hours that lasts 3–4 days and protects against both infarction and reversible postischemic contractile dysfunction, termed myocardial stunning. This phase involves the synthesis of new cardioprotective proteins stimulated by nitric oxide (NO), ROS and adenosine acting on kinases such as PKCε and Src, which in turn activate gene transcription and upregulation of late PC molecular players.

Ischemia-reperfusion (IR) tissue injury is the resultant pathology from a combination of factors, including tissue hypoxia, followed by tissue damage associated with re-oxygenation. IR injury contributes to disease and mortality in a variety of pathologies, including myocardial infarction, ischemic stroke, acute kidney injury, trauma, circulatory arrest, sickle cell disease and sleep apnea. Whether resulting from traumatic vessel disruption, tourniquet application, or shock, the extremity is exposed to an enormous flux in vascular perfusion during a critical period of tissue repair and regeneration. The contribution of this ischemia and subsequent reperfusion on post-traumatic musculoskeletal tissues is unknown; however, it is likely that similar to cardiac and kidney tissue, IR significantly contributes to tissue fibrosis.

<span class="mw-page-title-main">Perilipin-5</span> Mammalian protein found in Homo sapiens

Perilipin 5, also known as Oxpatperilipin 5 or PLIN5, is a protein that belongs to perilipin family. This protein group has been shown to be responsible for lipid droplet's biogenesis, structure and degradation. In particular, Perilipin 5 is a lipid droplet-associated protein whose function is to keep the balance between lipolysis and lipogenesis, as well as maintaining lipid droplet homeostasis. For example, in oxidative tissues, muscular tissues and cardiac tissues, PLIN5 promotes association between lipid droplets and mitochondria.

Roberta Anne Gottlieb is an American oncologist, academic, and researcher. She is a Professor, and Vice-Chair of Translational Medicine in the Department of Biomedical Sciences at Cedars-Sinai Medical Center, and a Professor of Medicine at the University of California, Los Angeles.

References

  1. Picard J, Meek T (February 2006). "Lipid emulsion to treat overdose of local anaesthetic: the gift of the glob". Anaesthesia. 61 (2): 107–9. doi:10.1111/j.1365-2044.2005.04494.x. PMID   16430560. S2CID   29843241.
  2. Weinberg GL, VadeBoncouer T, Ramaraju GA, Garcia-Amaro MF, Cwik MJ (April 1998). "Pretreatment or resuscitation with a lipid infusion shifts the dose-response to bupivacaine-induced asystole in rats". Anesthesiology. 88 (4): 1071–5. doi: 10.1097/00000542-199804000-00028 . PMID   9579517. S2CID   1661916.
  3. Weinberg G, Ripper R, Feinstein DL, Hoffman W (2003). "Lipid emulsion infusion rescues dogs from bupivacaine-induced cardiac toxicity". Regional Anesthesia and Pain Medicine. 28 (3): 198–202. doi:10.1053/rapm.2003.50041. PMID   12772136. S2CID   6247454.
  4. Weinberg G (2004). "Reply to Drs. Goor, Groban and Butterworth – Lipid rescue: Caveats and recommendations for the 'silver bullet' (letter)". Regional Anesthesia and Pain Medicine. 29: 74–75. doi:10.1097/00115550-200401000-00022.
  5. Mahoney D. "IV Fat Emulsion Beneficial for Some Drug Overdoses". Acep.org. Elsevier Global Medical News. Archived from the original on 18 September 2016. Retrieved 3 November 2013.
  6. Hallberg D, Holm I, Obel AL, Schuberth O, Wretlind A (April 1967). "Fat emulsions for complete intravenous nutrition". Postgraduate Medical Journal. 43 (498): 307–16. doi:10.1136/pgmj.43.498.307. PMC   2466293 . PMID   4962960.
  7. Isaksson B, Hambraeus L, Vinnars E, Samuelson G, Larsson J, Asp NG (2002). "In memory of Arvid Wretlind 1919 – 2002". Scandinavian Journal of Nutrition. 46 (3): 117–118. doi: 10.1080/11026480260363233 .
  8. Driver I, Feather JW, King PR, Dawson JB (1989). "The optical properties of aqueous suspensions of Intralipid, a fat emulsion". Physics in Medicine and Biology. 34 (12): 1927–1930. Bibcode:1989PMB....34.1927D. doi:10.1088/0031-9155/34/12/015. S2CID   250815526.
  9. 1 2 3 Li J, Iorga A, Sharma S, Youn JY, Partow-Navid R, Umar S, Cai H, Rahman S, Eghbali M (October 2012). "Intralipid, a clinically safe compound, protects the heart against ischemia-reperfusion injury more efficiently than cyclosporine-A". Anesthesiology. 117 (4): 836–46. doi:10.1097/ALN.0b013e3182655e73. PMC   3769111 . PMID   22814384.
  10. Sanada S, Komuro I, Kitakaze M (November 2011). "Pathophysiology of myocardial reperfusion injury: preconditioning, postconditioning, and translational aspects of protective measures". American Journal of Physiology. Heart and Circulatory Physiology. 301 (5): H1723-41. doi:10.1152/ajpheart.00553.2011. PMID   21856909.
  11. 1 2 3 4 Rahman S, Li J, Bopassa JC, Umar S, Iorga A, Partownavid P, Eghbali M (August 2011). "Phosphorylation of GSK-3β mediates intralipid-induced cardioprotection against ischemia/reperfusion injury". Anesthesiology. 115 (2): 242–53. doi:10.1097/ALN.0b013e318223b8b9. PMC   3322241 . PMID   21691195.
  12. 1 2 Lou PH, Lucchinetti E, Zhang L, Affolter A, Schaub MC, Gandhi M, Hersberger M, Warren BE, Lemieux H, Sobhi HF, Clanachan AS, Zaugg M (2014). "The mechanism of Intralipid®-mediated cardioprotection complex IV inhibition by the active metabolite, palmitoylcarnitine, generates reactive oxygen species and activates reperfusion injury salvage kinases". PLOS ONE. 9 (1): e87205. Bibcode:2014PLoSO...987205L. doi: 10.1371/journal.pone.0087205 . PMC   3907505 . PMID   24498043.
  13. 1 2 Perrelli MG, Pagliaro P, Penna C (June 2011). "Ischemia/reperfusion injury and cardioprotective mechanisms: Role of mitochondria and reactive oxygen species". World Journal of Cardiology. 3 (6): 186–200. doi: 10.4330/wjc.v3.i6.186 . PMC   3139040 . PMID   21772945.
  14. Martel C, Huynh L, Garnier A, Ventura-Clapier R, Brenner C (2012). "Inhibition of the Mitochondrial Permeability Transition for Cytoprotection: Direct versus Indirect Mechanisms". Biochemistry Research International. 2012: 1–13. doi: 10.1155/2012/213403 . PMC   3364550 . PMID   22675634.
  15. Nishihara M, Miura T, Miki T, Tanno M, Yano T, Naitoh K, Ohori K, Hotta H, Terashima Y, Shimamoto K (November 2007). "Modulation of the mitochondrial permeability transition pore complex in GSK-3beta-mediated myocardial protection". Journal of Molecular and Cellular Cardiology. 43 (5): 564–70. doi:10.1016/j.yjmcc.2007.08.010. PMID   17931653.