Long-chain-alcohol O-fatty-acyltransferase

Last updated
long-chain-alcohol O-fatty-acyltransferase
Identifiers
EC no. 2.3.1.75
CAS no. 64060-40-8
Databases
IntEnz IntEnz view
BRENDA BRENDA entry
ExPASy NiceZyme view
KEGG KEGG entry
MetaCyc metabolic pathway
PRIAM profile
PDB structures RCSB PDB PDBe PDBsum
Gene Ontology AmiGO / QuickGO
Search
PMC articles
PubMed articles
NCBI proteins

In enzymology, a long-chain-alcohol O-fatty-acyltransferase (EC 2.3.1.75) is an enzyme that catalyzes the chemical reaction

Contents

acyl-CoA + a long-chain alcohol CoA + a long-chain ester
Formation of wax esters by wax synthase. Wax Synthase Mechanism.png
Formation of wax esters by wax synthase.

Thus, the two substrates of this enzyme are acyl-CoA and long-chain alcohol, whereas its two products are CoA and long-chain ester.

This enzyme belongs to the family of transferases, specifically those acyltransferases transferring groups other than aminoacyl groups. The systematic name of this enzyme class is acyl-CoA:long-chain-alcohol O-acyltransferase. Other names in common use include wax synthase, and wax-ester synthase. In general, wax syntheses naturally accept acyl groups with carbon chain lengths of C16 or C18 and linear alcohols with carbon chain lengths ranging from C12 to C20. [1]

Variation

There are three unrelated families of wax syntheses found in many organisms including bacteria, higher plants, and animals [2] in two known distinct forms: either just as a wax synthase enzyme, which is found predominantly in eukaryotes, or as an enzyme with dual wax synthase and acyl CoA:diacylglycerol acyltransferase function, which is often the final enzyme in the biosynthetic pathway responsible for wax ester production from fatty alcohols and fatty acyl-CoAs and is found predominantly in prokaryotes. [3]

Prokaryotic bacteria

Acinetobacter

There are frequent reports of wax esters biosynthesis in bacteria of the Acinetobacter genus. In particular, it has been shown that the Acinetobacter calcoaceticus ADP1 strain synthesizes wax esters through a bifunctional wax ester synthase/acyl-CoA: diacylglycerol acyltransferase (WS/DGAT) and that this complex can be functionally expressed in different bacterial hosts, suggesting the potential for potential microbial production of cheap jojoba-like wax esters. [4] Furthermore, this was the first instance of bacterial WS/DGAT discovered. [3] Finally, Acinetobacter has been considered as an alternative source for jojoba-like wax ester production, but is limited by the fact that its wax ester content never exceeds 14% of the cell's dry weight. [5]

Rhodococcus jostii RHA1

Scientists have identified at least 14 genes in the Rhodococcus jostii RHA1 genome that encode putative wax ester synthase/acyl-CoA:diacylglycerol acyltransferase enzymes (WS/DGAT) with lengths ranging from 430 to 497 amino acid residues except for atf121 product, which was composed of 301 amino acid residues. [6] [7]

Other bacteria that have been shown to produce wax esters through homologs for the WS/DGAT gene include Psychrobacter arcticus 273-4 and P. Cryohalolentis K5, with only one a single copy of the WS/DGAT gene, M. aquaeolei VT8, with 4 homologs for WS/DGAT and A. Baylyi, with a mixture of wax esters even though it only has one WS/DGAT coding gene. [4] "M. tuberculosis" has also been shown to contain 15 atf genes encoding WS/DGATs. [8] Several of these bacterial WS/DGAT enzymes have a broad substrate range despite naturally producing a small range of wax esters. [9] [10] [11]

Plants

Arabidopsis thaliana

Scientists have also identified, characterized, and shown the WSD1 gene in Arabidopsis thaliana to encode a bifunctional wax ester synthase/diacylglycerol acyltransferase enzyme that is embedded in the ER membrane, in which the wax synthase portion is critical to wax ester synthesis using long-chain and very-long-chain primary alcohols with C fatty acids. [12]

Jojoba

Although the first wax synthase in plants was identified in the jojoba plant, the jojoba wax synthase could not be functionally expressed in microorganisms like E. coli and S. cerevisiae . [13]

Animals

Birds

The enzyme products of genes AdWS4, TaWS4, GgWS1, GgWS2, GgWS4, and GgDGAT1 sequences have been shown to catalyze wax ester syntheses in several bird species. [14]

Mammals

Scientists have discovered cDNA encoding wax synthase in the preputial gland of mice. [15] Furthermore, it has been shown that the wax synthase gene is located on the X chromosome, the expression of which lead to the formation of wax monoesters from straight chain, saturated, unsaturated, and polyunsaturated fatty alcohols and acids and that the formation of wax esters in mammals involves a two step biosynthetic pathway involving fatty acyl-CoA reductase and wax synthase enzymes. [15]

Humans

The enzymes produced by X-linked genes AWAT1 and AWAT2 have been shown to esterify long chain alcohols to produce wax esters and is most predominantly expressed in skin. [16] Both enzymes have dissimilar substrate specificities: AWAT1 prefers decyl alcohol (C10) and AWAT2 prefers C16 and C18 alcohols while using oleoyl-CoA as the acyl donor. However, when using acetyl alcohol as the acyl acceptor, AWAT1 prefers saturated acyl groups, while AWAT2 shows activity with all four acyl-CoAs and performs two times better with unsaturated acyl-CoAs than with saturated ones. [16] Along with the murine wax ester synthase, AWAT1 and AWAT2 are likely the most significant contributors in wax ester production in mammals. [16]

Enzyme structure

While the function of the molecule has been studied, its structure has yet to be identified.

Industrial relevance

There is a large demand for large-scale production of cheap jojoba-like wax esters since they have multiple commercial uses. [4] Scientists have found a way to achieve substantial biosynthesis and accumulation of neutral lipids in "E. coli", allowing for the possibilities of economic biotechnological production of cheap jojoba oil equivalents, the use of which was previously limited by its high price resulting in its restriction to medical and cosmetic applications. [17]

In addition, the knowledge gathered so far on the substrate specificity of different forms of wax synthase allows for scientists to explore the use of yeast cells, in particular Saccharomyces cerevisiae , in the production of biodiesel fuels. "S. Cerevisiae" is a well-documented industrial microorganism and is easy to cultivate, manipulate genetically, quick growth, and fatty acid metabolism, making it an ideal candidate for the expression of wax esters. [1] S. Cerevisiae is further suitable as for this task as they produce the necessary reactants for wax syntheses to create wax esters. [1] Scientists have investigated the possibility of expressing different wax synthase genes, including those of A. baylyi ADP1, M. hydrocarbonoclasticus DSM 8798, R. opacus PD630, M. musculus C57BL/6 and P. arcticus 273-4, in S. cerevisiae , and found that that of Marinobacter hydrocarbonoclasticus DSM 8798 was the most effective since it showed highest relative preference for ethanol, thus allowing for the production of biodiesel fuels, in part taking advantage of the enzyme's promiscuous nature. [1]

Related Research Articles

<span class="mw-page-title-main">Malonyl-CoA</span> Chemical compound

Malonyl-CoA is a coenzyme A derivative of malonic acid.

Polyketide synthases (PKSs) are a family of multi-domain enzymes or enzyme complexes that produce polyketides, a large class of secondary metabolites, in bacteria, fungi, plants, and a few animal lineages. The biosyntheses of polyketides share striking similarities with fatty acid biosynthesis.

<span class="mw-page-title-main">Acyl-CoA</span> Group of coenzymes that metabolize fatty acids

Acyl-CoA is a group of coenzymes that metabolize fatty acids. Acyl-CoA's are susceptible to beta oxidation, forming, ultimately, acetyl-CoA. The acetyl-CoA enters the citric acid cycle, eventually forming several equivalents of ATP. In this way, fats are converted to ATP, the universal biochemical energy carrier.

<span class="mw-page-title-main">Long-chain-fatty-acid—CoA ligase</span> Class of enzymes

The long chain fatty acyl-CoA ligase is an enzyme of the ligase family that activates the oxidation of complex fatty acids. Long chain fatty acyl-CoA synthetase catalyzes the formation of fatty acyl-CoA by a two-step process proceeding through an adenylated intermediate. The enzyme catalyzes the following reaction,

<span class="mw-page-title-main">Biosynthesis of doxorubicin</span>

Doxorubicin (DXR) is a 14-hydroxylated version of daunorubicin, the immediate precursor of DXR in its biosynthetic pathway. Daunorubicin is more abundantly found as a natural product because it is produced by a number of different wild type strains of streptomyces. In contrast, only one known non-wild type species, streptomyces peucetius subspecies caesius ATCC 27952, was initially found to be capable of producing the more widely used doxorubicin. This strain was created by Arcamone et al. in 1969 by mutating a strain producing daunorubicin, but not DXR, at least in detectable quantities. Subsequently, Hutchinson's group showed that under special environmental conditions, or by the introduction of genetic modifications, other strains of streptomyces can produce doxorubicin. His group has also cloned many of the genes required for DXR production, although not all of them have been fully characterized. In 1996, Strohl's group discovered, isolated and characterized dox A, the gene encoding the enzyme that converts daunorubicin into DXR. By 1999, they produced recombinant Dox A, a Cytochrome P450 oxidase, and found that it catalyzes multiple steps in DXR biosynthesis, including steps leading to daunorubicin. This was significant because it became clear that all daunorubicin producing strains have the necessary genes to produce DXR, the much more therapeutically important of the two. Hutchinson's group went on to develop methods to improve the yield of DXR, from the fermentation process used in its commercial production, not only by introducing Dox A encoding plasmids, but also by introducing mutations to deactivate enzymes that shunt DXR precursors to less useful products, for example baumycin-like glycosides. Some triple mutants, that also over-expressed Dox A, were able to double the yield of DXR. This is of more than academic interest because at that time DXR cost about $1.37 million per kg and current production in 1999 was 225 kg per annum. More efficient production techniques have brought the price down to $1.1 million per kg for the non-liposomal formulation. Although DXR can be produced semi-synthetically from daunorubicin, the process involves electrophilic bromination and multiple steps and the yield is poor. Since daunorubicin is produced by fermentation, it would be ideal if the bacteria could complete DXR synthesis more effectively.

Diglyceride acyltransferase, DGAT, catalyzes the formation of triglycerides (triacylglycerols) from diacylglycerol and acyl-CoA. The reaction catalyzed by DGAT is considered the terminal and only committed step in the acyl-CoA depedent triglyceride synthesis, univerally important in animal, plants, and microorganisms. The conversion is essential for intestinal absorption and adipose tissue formation in mamalian. DGAT1 are homologous to other membrane-bound O-acyltransferases, but other DGATs are not.

In enzymology, a [acyl-carrier-protein] S-acetyltransferase is an enzyme that catalyzes the reversible chemical reaction

In enzymology, a [acyl-carrier-protein] S-malonyltransferase is an enzyme that catalyzes the chemical reaction

In enzymology, a beta-ketoacyl-acyl-carrier-protein synthase II (EC 2.3.1.179) is an enzyme that catalyzes the chemical reaction

In enzymology, an erythronolide synthase is an enzyme that catalyzes the chemical reaction

In enzymology, sphingosine N-acyltransferases (ceramide synthases (CerS), EC 2.3.1.24) are enzymes that catalyze the chemical reaction of synthesis of ceramide:

Sterol O-acyltransferase is an intracellular protein located in the endoplasmic reticulum that forms cholesteryl esters from cholesterol.

<span class="mw-page-title-main">SOAT2</span> Protein-coding gene in the species Homo sapiens

Sterol O-acyltransferase 2, also known as SOAT2, is an enzyme that in humans is encoded by the SOAT2 gene.

<span class="mw-page-title-main">MLSTD2</span> Protein-coding gene in the species Homo sapiens

Fatty acyl-CoA reductase 1 is an enzyme that in humans is encoded by the FAR1 gene.

<span class="mw-page-title-main">1-Lysophosphatidylcholine</span>

2-acyl-sn-glycero-3-phosphocholines are a class of phospholipids that are intermediates in the metabolism of lipids. Because they result from the hydrolysis of an acyl group from the sn-1 position of phosphatidylcholine, they are also called 1-lysophosphatidylcholine. The synthesis of phosphatidylcholines with specific fatty acids occurs through the synthesis of 1-lysoPC. The formation of various other lipids generates 1-lysoPC as a by-product.

Very-long-chain 3-oxoacyl-CoA synthase (EC 2.3.1.199, very-long-chain 3-ketoacyl-CoA synthase, very-long-chain beta-ketoacyl-CoA synthase, condensing enzyme, CUT1 (gene), CERS6 (gene), FAE1 (gene), KCS (gene), ELO (gene)) is an enzyme with systematic name malonyl-CoA:very-long-chain acyl-CoA malonyltransferase (decarboxylating and thioester-hydrolysing). This enzyme catalyses the following chemical reaction

<span class="mw-page-title-main">Ketoacyl synthase</span> Catalyst for a key step in fatty acid synthesis

Ketoacyl synthases (KSs) catalyze the condensation reaction of acyl-CoA or acyl-acyl ACP with malonyl-CoA to form 3-ketoacyl-CoA or with malonyl-ACP to form 3-ketoacyl-ACP. This reaction is a key step in the fatty acid synthesis cycle, as the resulting acyl chain is two carbon atoms longer than before. KSs exist as individual enzymes, as they do in type II fatty acid synthesis and type II polyketide synthesis, or as domains in large multidomain enzymes, such as type I fatty acid synthases (FASs) and polyketide synthases (PKSs). KSs are divided into five families: KS1, KS2, KS3, KS4, and KS5.

<span class="mw-page-title-main">DGAT1</span> Mammalian protein found in Homo sapiens

Diacylglycerol O-acyltransferase 1 is an enzyme that in humans is encoded by the DGAT1 gene.

<span class="mw-page-title-main">Diacylglycerol O-acyltransferase 2</span> Protein-coding gene in the species Homo sapiens

Diacylglycerol O-acyltransferase 2 (DGAT2) is a protein that in humans is encoded by the DGAT2 gene.

An oleaginous microorganism is a type of microbe that accumulates lipid as a normal part of its metabolism. Oleaginous microbes may accumulate an array of different lipid compounds, including polyhydroxyalkanoates, triacylglycerols, and wax esters. Various microorganisms, including bacteria, fungi, and yeast, are known to accumulate lipids. These organisms are often researched for their potential use in producing fuels from waste products.

References

  1. 1 2 3 4 Shi, Shuobo; Valle-Rodriguez JO; Khoomrung S; Siewers V; Nielsen J (24 February 2012). "Functional expression and characterization of five wax ester synthases in Saccharomyces cerevisiae and their utility for biodiesel production". Biotechnology for Biofuels. 5 (7): 7. doi: 10.1186/1754-6834-5-7 . PMC   3309958 . PMID   22364438.
  2. Jetter, R; Kunst, L (2008). "Plant surface lipid biosynthetic pathways and their utility for metabolic engineering of waxes and hydrocarbon biofuels". Plant J. 54 (4): 670–683. doi:10.1111/j.1365-313x.2008.03467.x. PMID   18476871.
  3. 1 2 Barney, BM; Wahlen BD; Garner E; Wei J; Seefeldt LC (2012). "Differences in Substrate Specificities of Five Bacterial Wax Ester Synthases". Appl Environ Microbiol. 78 (16): 5734–45. doi:10.1128/aem.00534-12. PMC   3406160 . PMID   22685145.
  4. 1 2 3 Kalscheuer, R; Steinbuchel A (2003). "A novel bifunctional wax ester synthase/acyl-CoA:diacylglycerol acyltransferase mediates wax ester and triacylglycerol biosynthesis in Acinetobacter calcoaceticus ADP1". J. Biol. Chem. 278 (10): 8075–8082. doi: 10.1074/jbc.m210533200 . PMID   12502715.
  5. Fixter, LM; Nagi MN; McCormack JG; Fewson CA (1986). "Structure, distribution and function of wax esters in Acinetobacter calcoaceticus". J. Gen. Microbiol. 132 (11): 3147–3157. doi: 10.1099/00221287-132-11-3147 .
  6. Hernandez, MA; et al. (2008). "Biosynthesis of storage compounds by Rhodococcus jostii RHA1 and global identification of genes involved in their metabolism". BMC Genomics. 9: 600. doi: 10.1186/1471-2164-9-600 . PMC   2667194 . PMID   19077282.
  7. McLeod, MP; et al. (2006). "The complete genome of Rhodococcus sp.RHA1 provides insights into a catabolic powerhouse". Proc. Natl. Acad. Sci. U.S.A. 103 (42): 15582–15587. doi: 10.1073/pnas.0607048103 . PMC   1622865 . PMID   17030794.
  8. Daniel, J; Deb C; Dubey VS; Sirakova TD; Abomoelak B; Morbidoni HR; Kolattukudy PE (2004). "Induction of a novel class of diacylglycerol acyltransferases and triacylglycerol accu- mulation in Mycobacterium tuberculosis as it goes into a dormancy-like state in culture". J Bacteriol. 186 (15): 5017–5030. doi:10.1128/jb.186.15.5017-5030.2004. PMC   451596 . PMID   15262939.
  9. Stöveken, T; Kalscheuer R; Malkus U; Reichelt R; Steinbüchel A. (2005). "The wax ester synthase/acyl coenzyme A:diacylglycerol acyltransferase from Acinetobacter sp. strain ADP1: characterization of a novel type of acyltransferase". J. Bacteriol. 187 (4): 1369–1376. doi:10.1128/jb.187.4.1369-1376.2005. PMC   545635 . PMID   15687201.
  10. Stöveken, T; Steinbüchel A. (2008). "Bacterial acyltransferases as an alternative for lipase-catalyzed acylation for the production of oleochemicals and fuels". Angew. Chem. Int. Ed. Engl. 47 (20): 3688–3694. doi:10.1002/anie.200705265. PMID   18399520.
  11. Manilla-Perez, E; Lange AB; Hetzler S; Steinbuchel A (2010). "Occurrence, production, and export of lipophilic compounds by hydrocarbonoclastic marine bacteria and their potential use to produce bulk chemicals from hydrocarbons". Appl. Microbiol. Biotechnol. 86 (6): 1693–1706. doi:10.1007/s00253-010-2515-5. PMID   20354694. S2CID   22011891.
  12. Li, F; Wu X; Lam P; Bird D; Zheng H; Samuels L; Jetter R; Kunst L. (September 2008). "Identification of the wax ester synthase/acyl-coenzyme A: diacylglycerol acyltransferase WSD1 required for stem wax ester biosynthesis in Arabidopsis". Plant Physiol. 148 (1): 97–107. doi:10.1104/pp.108.123471. PMC   2528131 . PMID   18621978.
  13. Lardizabal, KD; Metz JG; Sakamoto T; Hutton WC; Pollard MR; Lassner MW. (Mar 2000). "Purification of a jojoba embryo wax synthase, cloning of its cDNA, and production of high levels of wax in seeds of transgenic arabidopsis". Plant Physiol. 122 (3): 645–55. doi:10.1104/pp.122.3.645. PMC   58899 . PMID   10712527.
  14. Biester, EM; Hellenbrand J; Gruber J; Hamberg M; Frentzen M. (4 Feb 2012). "Identification of avian wax synthases". BMC Biochem. 13: 4. doi: 10.1186/1471-2091-13-4 . PMC   3316144 . PMID   22305293.
  15. 1 2 Cheng, JB; Russell DW (3 Sep 2004). "Mammalian wax biosynthesis. II. Expression cloning of wax synthase cDNAs encoding a member of the acyltransferase enzyme family". J Biol Chem. 279 (36): 37798–807. doi: 10.1074/jbc.m406226200 . PMC   2743083 . PMID   15220349.
  16. 1 2 3 Turkish, AR; Henneberry AL; Cromley D; Padamsee M; Oelkers P; Bazzi H; Christiano AM; Billheimer JT; Sturley SL (15 Apr 2005). "Identification of two novel human acyl-CoA wax alcohol acyltransferases: members of the diacylglycerol acyltransferase 2 (DGAT2) gene superfamily". J Biol Chem. 280 (15): 14755–64. doi: 10.1074/jbc.m500025200 . PMID   15671038.
  17. Kalscheuer, R; Stöveken T; Luftmann H; Malkus U; Reichelt R; Steinbüchel A. (Feb 2006). "Neutral lipid biosynthesis in engineered Escherichia coli: jojoba oil-like wax esters and fatty acid butyl esters". Appl Environ Microbiol. 72 (2): 1373–9. doi:10.1128/aem.72.2.1373-1379.2006. PMC   1392940 . PMID   16461689.