Measurement of biodiversity

Last updated

A variety of objective means exist to empirically measure biodiversity. Each measure relates to a particular use of the data, and is likely to be associated with the variety of genes. Biodiversity is commonly measured in terms of taxonomic richness of a geographic area over a time interval. In order to calculate biodiversity, species evenness, species richness, and species diversity are to be obtained first. Species evenness [1] is the relative number of individuals of each species in a given area. Species richness [2] is the number of species present in a given area. Species diversity [3] is the relationship between species evenness and species richness. There are many ways to measure biodiversity within a given ecosystem. However, the two most popular are Shannon-Weaver diversity index, [4] commonly referred to as Shannon diversity index, and the other is Simpsons diversity index. [5] Although many scientists prefer to use Shannon's diversity index simply because it takes into account species richness. [6]

Contents

Biodiversity is usually plotted as the richness of a geographic area, with some reference to a temporal scale. Types of biodiversity include taxonomic or species, ecological, morphological, and genetic diversity. Taxonomic diversity, that is the number of species, genera, family is the most commonly assessed type. [7] A few studies have attempted to quantitatively clarify the relationship between different types of diversity. For example, the biologist Sarda Sahney has found a close link between vertebrate taxonomic and ecological diversity. [8]

Conservation biologists have also designed a variety of objective means to empirically measure biodiversity. Each measure of biodiversity relates to a particular use of the data. For practical conservationists, measurements should include a quantification of values that are commonly shared among locally affected organisms, including humans[ clarification needed ]. For others, a more economically defensible definition should allow the ensuring of continued possibilities for both adaptation and future use by humans, assuring environmental sustainability.

As a consequence, biologists argue that this measure is likely to be associated with the variety of genes. Since it cannot always be said which genes are more likely to prove beneficial, the best choice[ citation needed ] for conservation is to assure the persistence of as many genes as possible. For ecologists, this latter approach is sometimes considered too restrictive, as it prohibits ecological succession.

Taxonomic Diversity

Biodiversity is usually plotted as taxonomic richness of a geographic area, with some reference to a temporal scale. Whittaker [9] described three common metrics used to measure species-level biodiversity, encompassing attention to species richness or species evenness:

More recently, two new indices have been invented. The Mean Species Abundance Index (MSA) calculates the trend in population size of a cross section of the species. It does this in line with the CBD 2010 indicator for species abundance. [10] The Biodiversity Intactness Index (BII) measures biodiversity change using abundance data on plants, fungi and animals worldwide. The BII shows how local terrestrial biodiversity responds to human pressures such as land use change and intensification.

Other Measures of Diversity

Alternatively, other types of diversity may be plotted against a temporal timescale:

These different types of diversity may not be independent. There is, for example, a close link between vertebrate taxonomic and ecological diversity. [11]

Other authors tried to organize the measurements of biodiversity in the following way: [12]

Scale

Diversity may be measured at different scales. These are three indices used by ecologists:

See also

Related Research Articles

<span class="mw-page-title-main">Biodiversity</span> Variety and variability of life forms

Biodiversity or biological diversity is the variety and variability of life on Earth. Biodiversity is a measure of variation at the genetic, species, and ecosystem level. Biodiversity is not distributed evenly on Earth; it is usually greater in the tropics as a result of the warm climate and high primary productivity in the region near the equator. Tropical forest ecosystems cover less than 10% of earth's surface and contain about 90% of the world's species. Marine biodiversity is usually higher along coasts in the Western Pacific, where sea surface temperature is highest, and in the mid-latitudinal band in all oceans. There are latitudinal gradients in species diversity. Biodiversity generally tends to cluster in hotspots, and has been increasing through time, but will be likely to slow in the future as a primary result of deforestation. It encompasses the evolutionary, ecological, and cultural processes that sustain life.

Family is one of the eight major hierarchical taxonomic ranks in Linnaean taxonomy. It is classified between order and genus. A family may be divided into subfamilies, which are intermediate ranks between the ranks of family and genus. The official family names are Latin in origin; however, popular names are often used: for example, walnut trees and hickory trees belong to the family Juglandaceae, but that family is commonly referred to as the "walnut family".

<span class="mw-page-title-main">Conservation biology</span> Study of threats to biological diversity

Conservation biology is the study of the conservation of nature and of Earth's biodiversity with the aim of protecting species, their habitats, and ecosystems from excessive rates of extinction and the erosion of biotic interactions. It is an interdisciplinary subject drawing on natural and social sciences, and the practice of natural resource management.

<span class="mw-page-title-main">Paleoecology</span> Study of interactions between organisms and their environments across geologic timescales

Paleoecology is the study of interactions between organisms and/or interactions between organisms and their environments across geologic timescales. As a discipline, paleoecology interacts with, depends on and informs a variety of fields including paleontology, ecology, climatology and biology.

Species diversity is the number of different species that are represented in a given community. The effective number of species refers to the number of equally abundant species needed to obtain the same mean proportional species abundance as that observed in the dataset of interest. Meanings of species diversity may include species richness, taxonomic or phylogenetic diversity, and/or species evenness. Species richness is a simple count of species. Taxonomic or phylogenetic diversity is the genetic relationship between different groups of species. Species evenness quantifies how equal the abundances of the species are.

A functional group is merely a set of species, or collection of organisms, that share alike characteristics within a community. Ideally, the lifeforms would perform equivalent tasks based on domain forces, rather than a common ancestor or evolutionary relationship. This could potentially lead to analogous structures that overrule the possibility of homology. More specifically, these beings produce resembling effects to external factors of an inhabiting system. Due to the fact that a majority of these creatures share an ecological niche, it is practical to assume they require similar structures in order to achieve the greatest amount of fitness. This refers to such as the ability to successfully reproduce to create offspring, and furthermore sustain life by avoiding alike predators and sharing meals.

<span class="mw-page-title-main">Roadian</span> Fifth stage of the Permian

In the geologic timescale, the Roadian is an age or stage of the Permian. It is the earliest or lower of three subdivisions of the Guadalupian Epoch or Series. The Roadian lasted between 273.01 and 266.9 million years ago (Ma). It was preceded by the Kungurian and followed by the Wordian.

A diversity index is a quantitative measure that reflects how many different types there are in a dataset. More sophisticated indices accounting for the phylogenetic relatedness among the types. Diversity indices are statistical representations of different aspects of biodiversity, that are useful simplifications to compare different communities or sites.

<span class="mw-page-title-main">Michael Benton</span> British palaeontologist

Michael James Benton is a British palaeontologist, and professor of vertebrate palaeontology in the School of Earth Sciences at the University of Bristol. His published work has mostly concentrated on the evolution of Triassic reptiles but he has also worked on extinction events and faunal changes in the fossil record.

In ecology, alpha diversity (α-diversity) is the mean species diversity in a site at a local scale. The term was introduced by R. H. Whittaker together with the terms beta diversity (β-diversity) and gamma diversity (γ-diversity). Whittaker's idea was that the total species diversity in a landscape is determined by two different things, the mean species diversity in sites at a more local scale and the differentiation among those sites.

<span class="mw-page-title-main">Latitudinal gradients in species diversity</span> Global increase in species richness from polar regions to tropics

Species richness, or biodiversity, increases from the poles to the tropics for a wide variety of terrestrial and marine organisms, often referred to as the latitudinal diversity gradient. The latitudinal diversity gradient is one of the most widely recognized patterns in ecology. It has been observed to varying degrees in Earth's past. A parallel trend has been found with elevation, though this is less well-studied.

Biotic material or biological derived material is any material that originates from living organisms. Most such materials contain carbon and are capable of decay.

A pioneer organism, also called a disaster taxon, is an organism that colonizes a previously empty area first, or one that repopulates vacant niches after a natural disaster, mass extinction or any other catastrophic event that wipes out most life of the prior biome. A group of such organisms capable of continued procreation among themselves are a pioneer species.

<span class="mw-page-title-main">Community (ecology)</span> Associated populations of species in a given area

In ecology, a community is a group or association of populations of two or more different species occupying the same geographical area at the same time, also known as a biocoenosis, biotic community, biological community, ecological community, or life assemblage. The term community has a variety of uses. In its simplest form it refers to groups of organisms in a specific place or time, for example, "the fish community of Lake Ontario before industrialization".

<span class="mw-page-title-main">Red List Index</span> Conservation status indicator

The Red List Index (RLI), based on the IUCN Red List of Threatened Species, is an indicator of the changing state of global biodiversity. It defines the conservation status of major species groups, and measures trends in extinction risk over time. By conducting conservation assessments at regular intervals, changes in the threat status of species in a taxonomic group can be used to monitor trends in extinction risk. RLIs have been calculated for birds and amphibians, using changes in threat status for species in each of the groups.

<span class="mw-page-title-main">Global biodiversity</span> Total variability of Earths life forms

Global biodiversity is the measure of biodiversity on planet Earth and is defined as the total variability of life forms. More than 99 percent of all species that ever lived on Earth are estimated to be extinct. Estimates on the number of Earth's current species range from 2 million to 1 trillion, but most estimates are around 11 million species or fewer. About 1.74 million species were databased as of 2018, and over 80 percent have not yet been described. The total amount of DNA base pairs on Earth, as a possible approximation of global biodiversity, is estimated at 5.0 x 1037, and weighs 50 billion tonnes. In comparison, the total mass of the biosphere has been estimated to be as much as 4 TtC (trillion tons of carbon).

Ecological forecasting uses knowledge of physics, ecology and physiology to predict how ecological populations, communities, or ecosystems will change in the future in response to environmental factors such as climate change. The goal of the approach is to provide natural resource managers with information to anticipate and respond to short and long-term climate conditions.

Olson's Extinction was a mass extinction that occurred 273 million years ago in the late Cisuralian or early Guadalupian epoch of the Permian period, predating the much larger Permian–Triassic extinction event. The event is named after American paleontologist Everett C. Olson, who first identified the gap in fossil record indicating a sudden change between the early Permian and middle/late Permian faunas. Some authors also place a hiatus in the continental fossil record around that time, but others disagree. This event has been argued by some authors to have affected many taxa, including embryophytes, marine metazoans, and tetrapods.

The Pull of the Recent (POR) describes a phenomenon in which a combination of factors causes palaeontologists to overestimate diversity towards the present day. Biased preservation and sampling in the fossil record results in past biodiversity estimates to be lower with modern taxa being considered more diverse because present biodiversity is the best sampled. However the overall impact of the POR does not seem to be as large as originally thought.

The Arcadia Formation is a geological formation located within central-eastern Queensland, Australia, which has been aged between the Induan–Olenekian epoch of the Early-Triassic period. It is most well known for its abundance of Early-Triassic aged fossils, most notably its high diversity of amphibians.

References

  1. "Species Evenness - an overview | ScienceDirect Topics". www.sciencedirect.com. Retrieved 2023-02-25.
  2. Chakraborty, Jaya; Palit, Krishna; Das, Surajit (2022), "Metagenomic approaches to study the culture-independent bacterial diversity of a polluted environment—a case study on north-eastern coast of Bay of Bengal, India", Microbial Biodegradation and Bioremediation, Elsevier, pp. 81–107, doi:10.1016/B978-0-323-85455-9.00014-X, ISBN   9780323854559, S2CID   244883885 , retrieved 2023-02-25
  3. Hamilton, Andrew J. (2005-04-01). "Species diversity or biodiversity?". Journal of Environmental Management. 75 (1): 89–92. doi:10.1016/j.jenvman.2004.11.012. ISSN   0301-4797. PMID   15748806.
  4. Ortiz-Burgos, Selene (2016), "Shannon-Weaver Diversity Index", in Kennish, Michael J. (ed.), Encyclopedia of Estuaries, Encyclopedia of Earth Sciences Series, Dordrecht: Springer Netherlands, pp. 572–573, doi:10.1007/978-94-017-8801-4_233, ISBN   978-94-017-8801-4 , retrieved 2023-02-25
  5. Allaby, Michael (2010), "Simpson's diversity index", A Dictionary of Ecology, Oxford University Press, doi:10.1093/acref/9780199567669.001.0001, ISBN   978-0-19-956766-9 , retrieved 2023-02-25
  6. Morris, E. Kathryn; Caruso, Tancredi; Buscot, François; Fischer, Markus; Hancock, Christine; Maier, Tanja S.; Meiners, Torsten; Müller, Caroline; Obermaier, Elisabeth; Prati, Daniel; Socher, Stephanie A.; Sonnemann, Ilja; Wäschke, Nicole; Wubet, Tesfaye; Wurst, Susanne (September 2014). "Choosing and using diversity indices: insights for ecological applications from the German Biodiversity Exploratories". Ecology and Evolution. 4 (18): 3514–3524. Bibcode:2014EcoEv...4.3514M. doi:10.1002/ece3.1155. ISSN   2045-7758. PMC   4224527 . PMID   25478144.
  7. Sahney, S.; Benton, M.J. (2008). "Recovery from the most profound mass extinction of all time". Proceedings of the Royal Society B: Biological Sciences. 275 (1636): 759–65. doi:10.1098/rspb.2007.1370. PMC   2596898 . PMID   18198148.
  8. Sahney, S.; Benton, M.J.; Ferry, P.A. (2010). "Links between global taxonomic diversity, ecological diversity and the expansion of vertebrates on land". Biology Letters. 6 (4): 544–547. doi:10.1098/rsbl.2009.1024. PMC   2936204 . PMID   20106856.
  9. Whittaker, R.H., Evolution and measurement of species diversity, Taxon, 21, 213–251 (1972)
  10. "MSA Index (page 4)" (PDF). Archived from the original (PDF) on 2008-05-10. Retrieved 2008-05-10.
  11. Sahney, S., Benton, M.J. and Ferry, P.A. (2010). "Links between global taxonomic diversity, ecological diversity and the expansion of vertebrates on land". Biology Letters. 6 (4): 544–547. doi:10.1098/rsbl.2009.1024. PMC   2936204 . PMID   20106856.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  12. Cianciaruso, M.V., Silva, I.A. & Batalha, M.A. Diversidades filogenética e funcional: novas abordagens para a Ecologia de comunidades. Biota Neotrop. 9(3): .
  13. Sahney, S. & Benton, M.J. (2008). "Recovery from the most profound mass extinction of all time". Proceedings of the Royal Society B: Biological Sciences . 275 (1636): 759–65. doi:10.1098/rspb.2007.1370. PMC   2596898 . PMID   18198148.