Messier 3

Last updated
Messier 3
Messier 3 - Adam Block - Mount Lemmon SkyCenter - University of Arizona.jpg
Globular cluster Messier 3 in Canes Venatici
Observation data (J2000 epoch)
Class VI [1] [2]
Constellation Canes Venatici
Right ascension 13h 42m 11.62s [3]
Declination +28° 22 38.2 [3]
Distance 33.9  kly (10.4  kpc) [4]
Apparent magnitude (V)6.39 [5]
Apparent dimensions (V)18′.0
Physical characteristics
Absolute magnitude -8.93
Mass4.5×105 [6]   M
Radius90 ly
Tidal radius 113  ly (30  pc)[mean] [7]
Metallicity  = –1.34 [8] dex
Estimated age11.39  Gyr [8]
Other designations NGC 5272 [9]
See also: Globular cluster, List of globular clusters

Messier 3 (M3; also NGC 5272) is a globular cluster of stars in the northern constellation of Canes Venatici.

Contents

Discovery

It was discovered on May 3, 1764, [10] and was the first Messier object to be discovered by Charles Messier himself. Messier originally mistook the object for a nebula without stars. This mistake was corrected after the stars were resolved by William Herschel around 1784. [11] Since then, it has become one of the best-studied globular clusters. Identification of the cluster's unusually large variable star population was begun in 1913 by American astronomer Solon Irving Bailey and new variable members continue to be identified up through 2004. [12]

Visibility

Many amateur astronomers consider it one of the finest northern globular clusters, following only Messier 13. [1] M3 has an apparent magnitude of 6.2, [9] making it a difficult naked eye target [13] even with dark conditions with averted vision. However, with a moderate-sized telescope, the cluster can be seen as a cloudy smudge even in severely light-polluted skies, and can be further defined in darker conditions. It can be found by looking almost exactly halfway along the north-west line that would join Arcturus (α Boötis) to Cor Caroli (α Canum Venaticorum). Using a telescope with a 25 cm (9.8 in) aperture, the cluster has a bright core with a diameter of about 6  arcminutes and spans a total of double that. [1]

Characteristics

This cluster is one of the largest and brightest, and is made up of around 500,000 stars. [11] It is estimated to be 11.4 billion years old. [8] It is centered at 32,600 light-years (10.0 kpc) away from Earth. [14]

Messier 3 is quite isolated as it is 31.6  kly (9.7  kpc ) above the Galactic plane and roughly 38.8 kly (11.9 kpc) from the center of the Milky Way. It contains 274 known variable stars, by far the most found in any globular cluster. These include 133 RR Lyrae variables, of which about a third display the Blazhko effect of long-period modulation. The overall abundance of elements other than hydrogen and helium, what astronomers term the metallicity, is in the range of 1.34 to 1.50 dex. This value gives the logarithm of the abundance relative to the Sun; the actual proportion is 3.24.6% of the solar abundance. Messier 3 is the prototype for the Oosterhoff type I cluster, which is considered "metal-rich". That is, for a globular cluster, Messier 3 has a relatively high abundance of heavier elements. [15]

Arcturus and Cor Caroli can be used to help locate M3 M3map.png
Arcturus and Cor Caroli can be used to help locate M3

Related Research Articles

<span class="mw-page-title-main">Messier 4</span> Globular cluster in Scorpius

Messier 4 or M4 is a globular cluster in the constellation of Scorpius. It was discovered by Philippe Loys de Chéseaux in 1745 and catalogued by Charles Messier in 1764. It was the first globular cluster in which individual stars were resolved.

<span class="mw-page-title-main">Messier 5</span> Globular cluster in the constellation Serpens

Messier 5 or M5 is a globular cluster in the constellation Serpens. It was discovered by Gottfried Kirch in 1702.

<span class="mw-page-title-main">Messier 107</span> Globular cluster in Ophiuchus

Messier 107 or M107, also known as NGC 6171, is a very loose globular cluster in a very mildly southern part of the sky close to the equator in Ophiuchus, and is the last such object in the Messier Catalogue.

<span class="mw-page-title-main">Messier 2</span> Globular cluster in the constellation Aquarius

Messier 2 or M2 is a globular cluster in the constellation Aquarius, five degrees north of the star Beta Aquarii. It was discovered by Jean-Dominique Maraldi in 1746, and is one of the largest known globular clusters.

<span class="mw-page-title-main">Messier 80</span> Globular cluster in the constellation Scorpius

Messier 80 is a globular cluster in the constellation Scorpius. It was discovered by Charles Messier in 1781, being one of his first discoveries.

<span class="mw-page-title-main">Messier 19</span> Globular cluster in Ophiuchus

Messier 19 or M19 is a globular cluster in the constellation Ophiuchus. It was discovered by Charles Messier on June 5, 1764 and added to his catalogue of comet-like objects that same year. It was resolved into individual stars by William Herschel in 1784. His son, John Herschel, described it as "a superb cluster resolvable into countless stars". The cluster is located 4.5° WSW of Theta Ophiuchi and is just visible as a fuzzy point of light using 50 mm (2.0 in) binoculars. Using a telescope with a 25.4 cm (10.0 in) aperture, the cluster shows an oval appearance with a 3 × 4 core and a 5 × 7 halo.

<span class="mw-page-title-main">Messier 53</span> Globular cluster in the constellation Coma Berenices

Messier 53 is a globular cluster in the Coma Berenices constellation. It was discovered by Johann Elert Bode in 1775. M53 is one of the more outlying globular clusters, being about 60,000 light-years (18.4 kpc) light-years away from the Galactic Center, and almost the same distance from the Solar System. The cluster has a core radius (rc) of 2.18 pc, a half-light radius (rh) of 5.84 pc, and a tidal radius (rtr) of 239.9 pc.

<span class="mw-page-title-main">Messier 56</span> Globular cluster in Lyra

Messier 56 is a globular cluster in the constellation Lyra. It was discovered by Charles Messier in 1779. It is angularly found about midway between Albireo and Sulafat. In a good night sky it is tricky to find with large (50–80 mm) binoculars, appearing as a slightly fuzzy star. The cluster can be resolved using a telescope with an aperture of 8 in (20 cm) or larger.

<span class="mw-page-title-main">Messier 62</span> Globular cluster in the constellation Ophiuchus

Messier 62 or M62, also known as NGC 6266, is a globular cluster of stars in the south of the equatorial constellation of Ophiuchus. It was discovered in 1771 by Charles Messier, then added to his catalogue eight years later.

<span class="mw-page-title-main">Messier 70</span> Globular cluster in the constellation Sagittarius

Messier 70 or M70, also known as NGC 6681, is a globular cluster of stars to be found in the south of Sagittarius. It was discovered by Charles Messier in 1780. The famous comet Hale–Bopp was discovered near this cluster in 1995.

<span class="mw-page-title-main">Messier 71</span> Globular cluster in the constellation Sagitta

Messier 71 is a globular cluster in the small northern constellation Sagitta. It was discovered by Philippe Loys de Chéseaux in 1745 and included by Charles Messier in his catalog of non-comet-like objects in 1780. It was also noted by Koehler at Dresden around 1775.

<span class="mw-page-title-main">Messier 92</span> Globular cluster in the constellation Hercules

Messier 92 is a globular cluster of stars in the northern constellation of Hercules.

<span class="mw-page-title-main">NGC 5466</span> Class XII globular cluster in the constellation Boötes

NGC 5466 is a class XII globular cluster in the constellation Boötes. Located 51,800 light years from Earth and 52,800 light years from the Galactic Center, it was discovered by William Herschel on May 17, 1784, as H VI.9. This globular cluster is unusual insofar as it contains a certain blue horizontal branch of stars, as well as being unusually metal poor like ordinary globular clusters. It is thought to be the source of a stellar stream discovered in 2006, called the 45 Degree Tidal Stream. This star stream is an approximately 1.4° wide star lane extending from Boötes to Ursa Major.

<span class="mw-page-title-main">NGC 5986</span> Globular cluster in the constellation Lupus

NGC 5986 is a globular cluster of stars in the southern constellation of Lupus, located at a distance of approximately 34 kilolight-years from the Sun. It was discovered by Scottish astronomer James Dunlop on May 10, 1826. John L. E. Dreyer described it as, "a remarkable object, a globular cluster, very bright, large, round, very gradually brighter middle, stars of 13th to 15th magnitude". Its prograde–retrograde orbit through the Milky Way galaxy is considered irregular and highly eccentric. It has a mean heliocentric radial velocity of +100 km/s. The galacto-centric distance is 17 kly (5.2 kpc), which puts it in the galaxy's inner halo.

<span class="mw-page-title-main">NGC 1261</span> Globular cluster in the constellation Horologium

NGC 1261 is a globular cluster of stars in the southern constellation of Horologium, first discovered by Scottish astronomer James Dunlop in 1826. The cluster is located at a distance of 53 kilolight-years from the Sun, and 59 kilolight-years from the Galactic Center. It is about 10.24 billion years old with 341,000 times the mass of the Sun. The cluster does not display the normal indications of core collapse, but evidence suggests it may have instead passed through a post core-collapse bounce state within the past two billion years. The central luminosity density is 2.22 L·pc−3, which is low for a globular cluster. Despite this, it has a Shapley–Sawyer Concentration Class of II, indicating a dense central concentration.

<span class="mw-page-title-main">NGC 6352</span> Globular cluster in the constellation Ara

NGC 6352 is a globular cluster of stars in the southern constellation of Ara, located approximately 18.3 kly from the Sun. It was discovered by Scottish astronomer James Dunlop on May 14, 1826. The cluster has a Shapley–Sawyer Concentration Class of XI:. A telescope with a 15 cm (5.9 in) aperture is required to resolve the stars within this loose cluster.

<span class="mw-page-title-main">NGC 6584</span> Globular cluster in the constellation Telescopium

NGC 6584 is a globular cluster in the constellation Telescopium that lies near Theta Arae and is 45000 light-years distant. It is an Oosterhoff type I cluster, and contains at least 69 variable stars, most of which are RR Lyrae variables: 46 stars were identified as RRab variables; 15 as RRc variables, 1 RRe variable, 4 eclipsing binaries and 3 long period variables. NGC 6584 is about 4 kpc from the Galactic center and about 2.7 kpc from the Galactic plane.

<span class="mw-page-title-main">NGC 4147</span> Globular cluster in the constellation Coma Berenices

NGC 4147 is the New General Catalogue identifier for a globular cluster of stars in the northern constellation of Coma Berenices. It was discovered by English astronomer William Herschel on March 14, 1784, who described it as "very bright, pretty large, gradually brighter in the middle". With an apparent visual magnitude of 10.7, it is located around 60,000 light years away from the Sun at a relatively high galactic latitude of 77.2°.

<span class="mw-page-title-main">NGC 6441</span> Globular cluster in Scorpius

NGC 6441 is a globular cluster in the southern constellation of Scorpius. It was discovered by the Scottish astronomer James Dunlop on May 13, 1826, who described it as "a small, well-defined rather bright nebula, about 20″ in diameter". The cluster is located 5 arc minutes east-northeast of the star G Scorpii, and is some 43,000 light-years from the Sun.

<span class="mw-page-title-main">NGC 5053</span> Globular cluster in the constellation Coma Berenices

NGC 5053 is the New General Catalogue designation for a globular cluster in the northern constellation of Coma Berenices. It was discovered by German-British astronomer William Herschel on March 14, 1784 and cataloged as VI-7. In his abbreviated notation, he described it as, "an extremely faint cluster of extremely small stars with resolvable nebula 8 or 10′ diameter, verified by a power of 240, beyond doubt". Danish-Irish astronomer John Louis Emil Dreyer reported in 1888 that the cluster appeared, "very faint, pretty large, irregular round shape, growing very gradually brighter at the middle".

References

  1. 1 2 3 Thompson, Robert Bruce; Thompson, Barbara Fritchman (2007), Illustrated guide to astronomical wonders, DIY science O'Reilly Series, O'Reilly Media, Inc., p. 137, ISBN   978-0-596-52685-6.
  2. Shapley, Harlow; Sawyer, Helen B. (August 1927), "A Classification of Globular Clusters", Harvard College Observatory Bulletin, 849 (849): 11–14, Bibcode:1927BHarO.849...11S.
  3. 1 2 Goldsbury, Ryan; et al. (December 2010), "The ACS Survey of Galactic Globular Clusters. X. New Determinations of Centers for 65 Clusters", The Astronomical Journal, 140 (6): 1830–1837, arXiv: 1008.2755 , Bibcode:2010AJ....140.1830G, doi:10.1088/0004-6256/140/6/1830, S2CID   119183070.
  4. Paust, Nathaniel E. Q.; et al. (February 2010), "The ACS Survey of Galactic Globular Clusters. VIII. Effects of Environment on Globular Cluster Global Mass Functions", The Astronomical Journal, 139 (2): 476–491, Bibcode:2010AJ....139..476P, doi:10.1088/0004-6256/139/2/476, hdl: 2152/34371 , S2CID   120965440.
  5. Delessandro, Emanuele; Schiavon, Ricardo P.; Rood, Robert P.; Ferraro, Francesco R.; Sohn, Sangmo T.; Lanzoni, Barbara; O'Connell, Robert W. (September 2012), "Ultraviolet Properties of Galactic Globular Clusters with Galex. II. Integrated Colors", The Astronomical Journal , 144 (5): 126–139, arXiv: 1208.5698 , Bibcode:2012AJ....144..126D, doi:10.1088/0004-6256/144/5/126, S2CID   56419886.
  6. Marks, Michael; Kroupa, Pavel (August 2010), "Initial conditions for globular clusters and assembly of the old globular cluster population of the Milky Way", Monthly Notices of the Royal Astronomical Society, 406 (3): 2000–2012, arXiv: 1004.2255 , Bibcode:2010MNRAS.406.2000M, doi:10.1111/j.1365-2966.2010.16813.x, S2CID   118652005. Mass is from MPD on Table 1.
  7. Brosche, P.; Odenkirchen, M.; Geffert, M. (March 1999). "Instantaneous and average tidal radii of globular clusters". New Astronomy. 4 (2): 133–139. Bibcode:1999NewA....4..133B. doi:10.1016/S1384-1076(99)00014-7.
  8. 1 2 3 Forbes, Duncan A.; Bridges, Terry (May 2010), "Accreted versus in situ Milky Way globular clusters", Monthly Notices of the Royal Astronomical Society , 404 (3): 1203–1214, arXiv: 1001.4289 , Bibcode:2010MNRAS.404.1203F, doi:10.1111/j.1365-2966.2010.16373.x, S2CID   51825384.
  9. 1 2 "M 3". SIMBAD . Centre de données astronomiques de Strasbourg . Retrieved 2006-11-15.{{cite web}}: CS1 maint: postscript (link)
  10. Machholz, Don (2002), The observing guide to the Messier marathon: a handbook and atlas, Cambridge University Press, ISBN   978-0-521-80386-1.
  11. 1 2 Garner, Rob (2017-10-06). "Messier 3". NASA. Retrieved 2018-04-13.
  12. Valcarce, A. A. R.; Catelan, M. (August 2008), "A semi-empirical study of the mass distribution of horizontal branch stars in M 3 (NGC 5272)", Astronomy and Astrophysics, 487 (1): 185–195, arXiv: 0805.3161 , Bibcode:2008A&A...487..185V, doi:10.1051/0004-6361:20078231, S2CID   11097003.
  13. O'Meara, Stephen James; Levy, David H. (1998), Deep-Sky Companions: The Messier Objects, Cambridge University Press, p. 45, ISBN   978-0521553322.
  14. Cacciari, C.; Corwin, T. M.; Carney, B. W. (January 2005). "A Multicolor and Fourier Study of RR Lyrae Variables in the Globular Cluster NGC 5272 (M3)". The Astronomical Journal. 129 (1): 267–302. doi:10.1086/426325. ISSN   0004-6256. S2CID   8875833.
  15. Cacciari, C.; Corwin, T. M.; Carney, B. W. (January 2005), "A Multicolor and Fourier Study of RR Lyrae Variables in the Globular Cluster NGC 5272 (M3)", The Astronomical Journal, 129 (1): 267–302, arXiv: astro-ph/0409567 , Bibcode:2005AJ....129..267C, doi:10.1086/426325, S2CID   8875833.

See also