Michael selection theorem

Last updated

In functional analysis, a branch of mathematics, Michael selection theorem is a selection theorem named after Ernest Michael. In its most popular form, it states the following: [1]

Contents

Let X be a paracompact space and Y a Banach space.
Let be a lower hemicontinuous set-valued function with nonempty convex closed values.
Then there exists a continuous selection of F.
Conversely, if any lower semicontinuous multimap from topological space X to a Banach space, with nonempty convex closed values, admits a continuous selection, then X is paracompact. This provides another characterization for paracompactness.

Examples

Kakutani.svg

A function that satisfies all requirements

The function: , shown by the grey area in the figure at the right, is a set-valued function from the real interval [0,1] to itself. It satisfies all Michael's conditions, and indeed it has a continuous selection, for example: or .

A function that does not satisfy lower hemicontinuity

The function

is a set-valued function from the real interval [0,1] to itself. It has nonempty convex closed values. However, it is not lower hemicontinuous at 0.5. Indeed, Michael's theorem does not apply and the function does not have a continuous selection: any selection at 0.5 is necessarily discontinuous. [2]

Applications

Michael selection theorem can be applied to show that the differential inclusion

has a C1 solution when F is lower semi-continuous and F(t, x) is a nonempty closed and convex set for all (t, x). When F is single valued, this is the classic Peano existence theorem.

Generalizations

A theorem due to Deutsch and Kenderov generalizes Michel selection theorem to an equivalence relating approximate selections to almost lower hemicontinuity, where is said to be almost lower hemicontinuous if at each , all neighborhoods of there exists a neighborhood of such that

Precisely, Deutsch–Kenderov theorem states that if is paracompact, a normed vector space and is nonempty convex for each , then is almost lower hemicontinuous if and only if has continuous approximate selections, that is, for each neighborhood of in there is a continuous function such that for each , . [3]

In a note Xu proved that Deutsch–Kenderov theorem is also valid if is a locally convex topological vector space. [4]

See also

Related Research Articles

<span class="mw-page-title-main">Compact space</span> Type of mathematical space

In mathematics, specifically general topology, compactness is a property that seeks to generalize the notion of a closed and bounded subset of Euclidean space. The idea is that a compact space has no "punctures" or "missing endpoints", i.e., it includes all limiting values of points. For example, the open interval (0,1) would not be compact because it excludes the limiting values of 0 and 1, whereas the closed interval [0,1] would be compact. Similarly, the space of rational numbers is not compact, because it has infinitely many "punctures" corresponding to the irrational numbers, and the space of real numbers is not compact either, because it excludes the two limiting values and . However, the extended real number linewould be compact, since it contains both infinities. There are many ways to make this heuristic notion precise. These ways usually agree in a metric space, but may not be equivalent in other topological spaces.

The Hahn–Banach theorem is a central tool in functional analysis. It allows the extension of bounded linear functionals defined on a vector subspace of some vector space to the whole space, and it also shows that there are "enough" continuous linear functionals defined on every normed vector space to make the study of the dual space "interesting". Another version of the Hahn–Banach theorem is known as the Hahn–Banach separation theorem or the hyperplane separation theorem, and has numerous uses in convex geometry.

In topology and related branches of mathematics, a normal space is a topological space X that satisfies Axiom T4: every two disjoint closed sets of X have disjoint open neighborhoods. A normal Hausdorff space is also called a T4 space. These conditions are examples of separation axioms and their further strengthenings define completely normal Hausdorff spaces, or T5 spaces, and perfectly normal Hausdorff spaces, or T6 spaces.

In mathematics, a paracompact space is a topological space in which every open cover has an open refinement that is locally finite. These spaces were introduced by Dieudonné (1944). Every compact space is paracompact. Every paracompact Hausdorff space is normal, and a Hausdorff space is paracompact if and only if it admits partitions of unity subordinate to any open cover. Sometimes paracompact spaces are defined so as to always be Hausdorff.

<span class="mw-page-title-main">Semi-continuity</span> Property of functions which is weaker than continuity

In mathematical analysis, semicontinuity is a property of extended real-valued functions that is weaker than continuity. An extended real-valued function is uppersemicontinuous at a point if, roughly speaking, the function values for arguments near are not much higher than

In the area of mathematics known as functional analysis, a reflexive space is a locally convex topological vector space for which the canonical evaluation map from into its bidual is a homeomorphism. A normed space is reflexive if and only if this canonical evaluation map is surjective, in which case this evaluation map is an isometric isomorphism and the normed space is a Banach space. Those spaces for which the canonical evaluation map is surjective are called semi-reflexive spaces.

In the mathematical field of general topology, a meagre set is a subset of a topological space that is small or negligible in a precise sense detailed below. A set that is not meagre is called nonmeagre, or of the second category. See below for definitions of other related terms.

In functional analysis and related areas of mathematics, Fréchet spaces, named after Maurice Fréchet, are special topological vector spaces. They are generalizations of Banach spaces. All Banach and Hilbert spaces are Fréchet spaces. Spaces of infinitely differentiable functions are typical examples of Fréchet spaces, many of which are typically not Banach spaces.

<span class="mw-page-title-main">Extreme value theorem</span> Continuous real function on a closed interval has a maximum and a minimum

In calculus, the extreme value theorem states that if a real-valued function is continuous on the closed and bounded interval , then must attain a maximum and a minimum, each at least once. That is, there exist numbers and in such that:

<span class="mw-page-title-main">Closed graph theorem</span> Theorem relating continuity to graphs

In mathematics, the closed graph theorem may refer to one of several basic results characterizing continuous functions in terms of their graphs. Each gives conditions when functions with closed graphs are necessarily continuous.

In topology, a topological space is called simply connected if it is path-connected and every path between two points can be continuously transformed into any other such path while preserving the two endpoints in question. Intuitively, this corresponds to a space that has no disjoint parts and no holes that go completely through it, because two paths going around different sides of such a hole cannot be continuously transformed into each other. The fundamental group of a topological space is an indicator of the failure for the space to be simply connected: a path-connected topological space is simply connected if and only if its fundamental group is trivial.

In mathematical analysis, the Kakutani fixed-point theorem is a fixed-point theorem for set-valued functions. It provides sufficient conditions for a set-valued function defined on a convex, compact subset of a Euclidean space to have a fixed point, i.e. a point which is mapped to a set containing it. The Kakutani fixed point theorem is a generalization of the Brouwer fixed point theorem. The Brouwer fixed point theorem is a fundamental result in topology which proves the existence of fixed points for continuous functions defined on compact, convex subsets of Euclidean spaces. Kakutani's theorem extends this to set-valued functions.

In mathematics, the notion of the continuity of functions is not immediately extensible to set-valued functions between two sets A and B. The dual concepts of upper hemicontinuity and lower hemicontinuity facilitate such an extension. A set-valued function that has both properties is said to be continuous in an analogy to the property of the same name for single-valued functions.

<span class="mw-page-title-main">Subderivative</span> Generalization of derivatives to real-valued functions

In mathematics, subderivatives generalizes the derivative to convex functions which are not necessarily differentiable. The set of subderivatives at a point is called the subdifferential at that point. Subderivatives arise in convex analysis, the study of convex functions, often in connection to convex optimization.

<span class="mw-page-title-main">Minkowski functional</span> Function made from a set

In mathematics, in the field of functional analysis, a Minkowski functional or gauge function is a function that recovers a notion of distance on a linear space.

<span class="mw-page-title-main">Set-valued function</span> Function whose values are sets (mathematics)

A set-valued function is a mathematical function that maps elements from one set, the domain of the function, to subsets of another set. Set-valued functions are used in a variety of mathematical fields, including optimization, control theory and game theory.

In mathematics – specifically, in operator theory – a densely defined operator or partially defined operator is a type of partially defined function. In a topological sense, it is a linear operator that is defined "almost everywhere". Densely defined operators often arise in functional analysis as operations that one would like to apply to a larger class of objects than those for which they a priori "make sense".

The maximum theorem provides conditions for the continuity of an optimized function and the set of its maximizers with respect to its parameters. The statement was first proven by Claude Berge in 1959. The theorem is primarily used in mathematical economics and optimal control.

In functional analysis, a branch of mathematics, a selection theorem is a theorem that guarantees the existence of a single-valued selection function from a given set-valued map. There are various selection theorems, and they are important in the theories of differential inclusions, optimal control, and mathematical economics.

In mathematics, particularly in functional analysis and topology, the closed graph theorem is a result connecting the continuity of certain kinds of functions to a topological property of their graph. In its most elementary form, the closed graph theorem states that a linear function between two Banach spaces is continuous if and only if the graph of that function is closed.

References

  1. Michael, Ernest (1956). "Continuous selections. I". Annals of Mathematics . Second Series. 63 (2): 361–382. doi:10.2307/1969615. hdl: 10338.dmlcz/119700 . JSTOR   1969615. MR   0077107.
  2. "proof verification - Reducing Kakutani's fixed-point theorem to Brouwer's using a selection theorem". Mathematics Stack Exchange. Retrieved 2019-10-29.
  3. Deutsch, Frank; Kenderov, Petar (January 1983). "Continuous Selections and Approximate Selection for Set-Valued Mappings and Applications to Metric Projections". SIAM Journal on Mathematical Analysis. 14 (1): 185–194. doi:10.1137/0514015.
  4. Xu, Yuguang (December 2001). "A Note on a Continuous Approximate Selection Theorem". Journal of Approximation Theory. 113 (2): 324–325. doi: 10.1006/jath.2001.3622 .

Further reading