Napier Deltic

Last updated

Animated diagram of Deltic engine Napier Deltic Animation.gif
Animated diagram of Deltic engine
Cylinder firing order of the 18 cylinder Napier Deltic diesel engine: The grid represents triangular cylinder arrangement (banks A, B, C) and rows 1 to 6 Deltic 18 firing order.gif
Cylinder firing order of the 18 cylinder Napier Deltic diesel engine: The grid represents triangular cylinder arrangement (banks A, B, C) and rows 1 to 6

The Napier Deltic engine is a British opposed-piston valveless, supercharged uniflow scavenged, two-stroke diesel engine used in marine and locomotive applications, designed and produced by D. Napier & Son. Unusually, the cylinders were disposed in a three-bank triangle, with a crankshaft at each corner of the triangle.

Contents

The term Deltic (meaning "in the form of the Greek letter (capital) delta") is used to refer to both the Deltic E.130 opposed-piston, high-speed diesel engine and the locomotives produced by English Electric using these engines, including its demonstrator locomotive named DELTIC and the production version for British Railways, which designated these as the Class 55.

A single, half-sized, turbocharged Deltic power unit also featured in the English Electric-built Type 2 locomotive, designated as the Class 23. Both locomotive and engine became better known as the "Baby Deltic".

History and design

The Deltic story began in 1943 when the British Admiralty set up a committee to develop a high-power, lightweight diesel engine for motor torpedo boats. [1] Hitherto in the Royal Navy, such boats had been driven by petrol engines, but their highly flammable fuel made them vulnerable to fire, unlike diesel-powered E-boats. A patent for an engine, similar in complexity, but with four lines of pistons, not just three, was filed in 1930 by Wifredo Ricart, linked to Alfa Romeo, and to the Spanish INI truck maker Pegaso Pat ES0118013.

Until this time, diesel engines had poor power-to-weight ratios and low speed. Before the war, Napier had been working on an aviation diesel design known as the Culverin after licensing versions of the Junkers Jumo 204. The Culverin was an opposed-piston, two-stroke design. Instead of each cylinder having a single piston and being closed at one end with a cylinder head, the Jumo-based design used an elongated cylinder containing two pistons moving in opposite directions towards the centre. This obviates the need for a heavy cylinder head, as the opposing piston filled this role. On the downside, the layout required separate crankshafts on each end of the engine that must be coupled through gearing or shafts. The primary advantages of the design were uniflow breathing and a rather "flat" engine.

The Admiralty required a much more powerful engine, and knew about Junkers' designs for multicrankshaft engines of straight-six and diamond forms. The Admiralty felt that these would be a reasonable starting point for the larger design that it required. The result was a triangle, the cylinder banks forming the sides, with crankshafts at each corner connected by phasing gears to a single output shaft—effectively three separate V-12 engines. The Deltic could be produced with varying numbers of cylinders; 9 and 18 were the most common, having either three or six cylinders per bank, respectively. In 1946, the Admiralty placed a contract with the English Electric Company, parent of Napier, to develop this engine. [1]

One feature of the engine was the way that crankshaft-phasing was arranged to allow for exhaust port lead and inlet port lag. These engines are called "uniflow" designs, because the flow of gas into and out of the cylinder is one way, assisted by blowers to improve cylinder exhaust scavenging. The inlet/outlet port order is in/out/in/out/in/out going around the triangular ring (i.e. the inlet and outlet manifold arrangements have C3 rotational symmetry). [2]

Earlier attempts at designing such an engine met with the difficulty of arranging the pistons to move in the correct manner, for all three cylinders in one delta, and this was the problem that caused Junkers Motorenbau to leave behind work on the delta-form while continuing to prototype a diamond-form, four-crankshaft, 24-cylinder Junkers Jumo 223. Herbert Penwarden, a senior draughtsman with the Admiralty Engineering Laboratory, suggested that one crankshaft needed to revolve anticlockwise to achieve the correct piston-phasing, so Napier designers produced the necessary gearing so one of them rotated in the opposite direction to the other two.

Being an opposed-piston design with no inlet or exhaust valves, and no ability to vary the port positions, the Deltic design arranged each crankshaft to connect two adjacent pistons operating in different cylinders in the same plane, using "fork and blade" connecting rods, the latter an "inlet" piston used to open and close the inlet port, and the former an "exhaust" piston in the adjacent cylinder to open and close the exhaust port. This would have led the firing in each bank of cylinders to be 60° apart, but arranging that each cylinder's exhaust piston would lead its inlet piston by 20° of crankshaft rotation was adopted. This allowed the exhaust port to be opened well before the inlet port, and allowed the inlet port to be closed after the exhaust port, which led to both good scavenging of exhaust gas and good volumetric efficiency for the fresh air charge. This required the firing events for adjacent cylinders to be 40° apart. For the 18-cylinder design, firing events could be interlaced over all six banks. This led to the even, buzzing exhaust note of the Deltic, with a charge ignition every 20° of crankshaft revolution, and a lack of torsional vibration, ideal for use in mine-hunting vessels. The 9-cylinder design, having three banks of cylinders, has its crankshafts rotating in the opposite direction. The exhaust lead of 20° is added to the 60° between banks, giving firing events for adjacent cylinders in the same bank 80° apart. Interlacing firing events over all three banks of cylinders still leads to an even buzzing exhaust note, and charge ignition occurring every 40° of crankshaft revolution with consequent reduction of torsional vibration.

Although the engine was cylinder-ported and required no poppet valves, each bank had a camshaft, driven at crankshaft speed. This was used solely to drive the fuel-injection pumps, each cylinder having its own injector and pump, driven by its own cam lobe.

Uses

The Deltic-powered Hunt-class mine countermeasures vessel HMS Ledbury HMS Ledbury (M30) - Portsmouth 2007 - BB.jpg
The Deltic-powered Hunt-class mine countermeasures vessel HMS Ledbury

Development began in 1947 and the first Deltic model was the D18-11B, produced in 1950. It was designed to produce 2,500  hp (1,900  kW ) at 2000 rpm for a 15-minute rating; the continuous rating being 1,875 hp (1,398 kW) at 1700 rpm, based on a 10,000-hour overhaul or replacement life. [3] By January 1952 six engines were available, enough for full development and endurance trials. A captured German E-Boat, S212[ citation needed ] was selected as it was powered by Mercedes-Benz diesels with approximately the same power as the 18-cylinder Deltics. When two of the three Mercedes-Benz engines were replaced, the compactness of the Napier engines was graphically illustrated—they were half the size of the original engines and approximately one fifth the weight. [1]

Proving successful, Deltic Diesel engines became a common power plant in small and fast naval craft. The Royal Navy used them first in the Dark-class fast attack craft. [4] Subsequently they were used in a number of other smaller attack craft. Being largely of aluminium construction, their low magnetic signature allowed their use in mine countermeasures vessels and the Deltic was selected to power the Ton-class minesweepers. The Deltic engine is still in service in some Hunt class. These versions are de-rated to reduce engine stress.

Deltic Diesels served in MTBs and PT boats built for other navies. Particularly notable was the Norwegian Tjeld or Nasty class, which was also sold to Germany, Greece, and the United States Navy. Nasty-class boats served in the Vietnam War, largely for covert operations.

Smaller nine-cylinder Deltic 9 engines were used as marine engines, notably by minesweepers. The Ton-class vessels were powered by a pair of Deltic 18s and used an additional Deltic 9 for power generation for their magnetic influence sweep. [5] The Hunt class used three Deltic 9s, two for propulsion and again one for power generation, but this time with a hydraulic pump integrated to power bow-thrusters for slow-speed manœuvring, [6] until a refurbishment programme by BAE Systems, that ran from 2010 to 2018, replaced the Deltic with Caterpillar C32 engines in the eight remaining commissioned Royal Navy vessels.

Railway use

Napier Deltic powered British Rail Class 55 D9017 The Durham Light Infantry starting its engines at London King's Cross in 1966 D9017 The Durham Light Infantry(8190815683).jpg
Napier Deltic powered British Rail Class 55 D9017 The Durham Light Infantry starting its engines at London King's Cross in 1966
Napier Deltic engine at the National Railway Museum, York Napier Deltic Engine.jpg
Napier Deltic engine at the National Railway Museum, York

Deltic engines were used in two types of British rail locomotive: the 1961–62 built class 55 and the 1959 built class 23. These locomotive types were known as Deltics and Baby Deltics, respectively.

The Class 55 used two D18-25 series II type V Deltic engines: mechanically blown 18-cylinder engines each rated at 1,650 hp (1,230 kW) continuous at 1500 rpm. [7] [8] The Class 23 used a single less powerful nine-cylinder turbocharged T9-29 Deltic of 1,100 hp (820 kW). [9] [10]

Six out of the original 22 Class 55 locomotives survive. [11] Class leader D9000 Royal Scots Grey was returned to main line serviceable status in 1996. Following a power unit failure this locomotive was fitted, for a time, with an ex Royal Norwegian Navy T18-37K type, after various modifications were cleverly designed to make the new unit compatible.

Fire department use

The New York City Fire Department used a Napier Deltic engine to power their one-of-a-kind "Super Pumper System". This was a very-high-volume trailer-mounted fire pump with a separate tender. [12]

Reliability in service

While the Deltic engine was successful in marine and rail use and very powerful for its size and weight, it was a highly strung unit, requiring careful maintenance. This led to a policy of unit replacement rather than repair in situ. Deltic engines were easily removed after breakdown, generally being sent back to the manufacturer for repair, although after initial contracts expired both the Royal Navy and British Railways set up their own workshops for overhauls. [13]

Turbo-compound Deltic

The "E.185" or "Compound Deltic" turbo-compound variant was planned [1] and a single prototype was built in 1956 [14] and tested in 1957. [15] This capitalised on Napier's experience with both the "Nomad" and its increasing involvement with gas turbines. It used the Deltic as the gas generator inside a gas turbine, with both a twelve-stage axial compressor and a three-stage gas turbine. Unlike the Nomad, this turbine was not mechanically coupled to the crankshaft, but merely drove the compressor. It was hoped that it would produce 6,000 horsepower,[ citation needed ] with fuel economy and power-to-weight ratio "second to none". [16] Predictions by the engineers closely connected with it were that connecting rod failure would be the limit on this power, failing at around 5,300 bhp. On test it actually produced 5,600 bhp before throwing a connecting rod through the crankcase just as predicted. [14] Naval interest had waned by 1958 in favour of the pure gas turbine, despite its heavier fuel consumption, and no further development was carried out.

Comparable engines

Related Research Articles

<span class="mw-page-title-main">Piston</span> Machine component used to compress or contain expanding fluids in a cylinder

A piston is a component of reciprocating engines, reciprocating pumps, gas compressors, hydraulic cylinders and pneumatic cylinders, among other similar mechanisms. It is the moving component that is contained by a cylinder and is made gas-tight by piston rings. In an engine, its purpose is to transfer force from expanding gas in the cylinder to the crankshaft via a piston rod and/or connecting rod. In a pump, the function is reversed and force is transferred from the crankshaft to the piston for the purpose of compressing or ejecting the fluid in the cylinder. In some engines, the piston also acts as a valve by covering and uncovering ports in the cylinder.

<span class="mw-page-title-main">Two-stroke engine</span> Internal combustion engine type

A two-strokeengine is a type of internal combustion engine that completes a power cycle with two strokes of the piston during one power cycle, this power cycle being completed in one revolution of the crankshaft. A four-stroke engine requires four strokes of the piston to complete a power cycle during two crankshaft revolutions. In a two-stroke engine, the end of the combustion stroke and the beginning of the compression stroke happen simultaneously, with the intake and exhaust functions occurring at the same time.

<span class="mw-page-title-main">Napier Nomad</span> British diesel aircraft engine

The Napier Nomad is a British diesel aircraft engine designed and built by Napier & Son in 1949. They combined a piston engine with a turbine to recover energy from the exhaust and thereby improve fuel economy. Two versions were tested, the complex Nomad I which used two propellers, each driven by the mechanically independent stages, and the Nomad II, using the turbo-compound principle, coupled the two parts to drive a single propeller. The Nomad II had the lowest specific fuel consumption figures seen up to that time. Despite this the Nomad project was cancelled in 1955 having spent £5.1 million on development, as most interest had passed to turboprop designs.

<span class="mw-page-title-main">Opposed-piston engine</span> Combustion engine using disks compressing fuel in the same cylinder

An opposed-piston engine is a piston engine in which each cylinder has a piston at both ends, and no cylinder head. Petrol and diesel opposed-piston engines have been used mostly in large-scale applications such as ships, military tanks, and factories. Current manufacturers of opposed-piston engines include Cummins, Achates Power and Fairbanks-Morse Defense (FMDefense).

<span class="mw-page-title-main">Junkers Jumo 205</span>

The Jumo 205 aircraft engine was the most famous of a series of aircraft diesel engines produced by Junkers. The Jumo 204 first entered service in 1932. Later engines of this type comprised the experimental Jumo 206 and Jumo 208, with the Jumo 207 produced in some quantity for the Junkers Ju 86P and -R high-altitude reconnaissance aircraft, and the 46-meter wingspan, six-engined Blohm & Voss BV 222 Wiking flying boat. All three of these variants differed in stroke and bore and supercharging arrangements. In all, more than 900 of these engines were produced, in the 1930s and through most of World War II.

The Junkers Jumo 223 was an experimental 24-cylinder aircraft engine based on the Junkers Jumo 205. Like the Jumo 205, it was an opposed piston two-stroke diesel engine. It had four banks of six cylinders in a rhomboid configuration, with four crankshafts, one at each vertex of the rhombus, and 48 pistons. It was designed for a power of 2,500 horsepower at 4,400 rpm, and weighed around 2,370 kg.

<span class="mw-page-title-main">Junkers Jumo 222</span>

The Jumo 222 was a German high-power multiple-bank in-line piston aircraft engine from Junkers, designed under the management of Ferdinand Brandner of the Junkers Motorenwerke.

<span class="mw-page-title-main">V18 engine</span> Piston engine with 18 cylinders in vee configuration

A V18 engine is an eighteen-cylinder piston engine where two banks of nine cylinders are arranged in a V configuration around a common crankshaft.

<span class="mw-page-title-main">Junkers Jumo 204</span>

The Jumo 204 was an opposed-piston, inline, liquid-cooled 6-cylinder aircraft Diesel engine produced by the German manufacturer Junkers. It entered service in 1932. Later engines in the series, the Jumo 205, Jumo 206, Jumo 207 and Jumo 208, differed in stroke, bore, and supercharging arrangements.

<span class="mw-page-title-main">Dugald Clerk</span> Scottish engineer (1854–1932)

Sir Dugald Clerk KBE, LLD FRS was a Scottish engineer who designed the world's first successful two-stroke engine in 1878 and patented it in England in 1881. He was a graduate of Anderson's University in Glasgow, and Yorkshire College, Leeds. He formed the intellectual property firm with George Croydon Marks, called Marks & Clerk. He was knighted on 24 August 1917.

<span class="mw-page-title-main">Turbo-compound engine</span> Reciprocating engine combined with a blowdown turbine

A turbo-compound engine is a reciprocating engine that employs a turbine to recover energy from the exhaust gases. Instead of using that energy to drive a turbocharger as found in many high-power aircraft engines, the energy is instead sent to the output shaft to increase the total power delivered by the engine. The turbine is usually mechanically connected to the crankshaft, as on the Wright R-3350 Duplex-Cyclone, but electric and hydraulic power recovery systems have been investigated as well.

<span class="mw-page-title-main">Two-stroke diesel engine</span> Engine type

A two-stroke diesel engine is a diesel engine that uses compression ignition in a two-stroke combustion cycle. It was invented by Hugo Güldner in 1899.

<span class="mw-page-title-main">Napier Culverin</span> 1930s British aircraft piston engine

The Napier Culverin was a licensed built version of the Junkers Jumo 204 six-cylinder vertically opposed liquid-cooled diesel aircraft engine built by D. Napier & Son. The name is derived from the French word, culverin, for an early cannon or musket. First flown in 1938, the engine went into limited production, with testing carried out on a Blackburn Iris V biplane flying-boat aircraft and Fairey IIIF biplane.

<span class="mw-page-title-main">Inline engine (aeronautics)</span> Reciprocating engine arranged with cylinders in banks aligned with the crankshaft

In aviation, an inline engine is a reciprocating engine with banks of cylinders, one behind another, rather than rows of cylinders, with each bank having any number of cylinders, although more than six is uncommon. The major reciprocating-engine alternative configuration is the radial engine, where the cylinders are placed in a circular or "star" arrangement.

The Commer TS3 was a diesel engine fitted in Commer trucks built by the Rootes Group in the 1950s and 1960s. It was the first diesel engine used by the company.

Sulzer ZG9 was a pre-World War II opposed-piston two-stroke diesel engine by Sulzer. The engine was available with a choice of two, three and four cylinders ; the two-cylinder version developed 120 bhp. It used a piston scavenge pump. This was mounted vertically above one rocker, driven by a bellcrank from the main rockers. This engine is sometimes cited as an inspiration for the Commer TS3 design.

The Fairbanks-Morse 38 8-1/8 is a diesel engine of the two-stroke, opposed-piston type. It was developed in the 1930s, and is similar in arrangement to a contemporary series of German Bombers aircraft diesels. The engine was used extensively in US diesel electric submarines of the 1940s and 1950s, as backup power on most US nuclear submarines, as well as in other marine applications, stationary power generation, and briefly, locomotives. A slightly modified version, the 38ND 8-1/8, continues in service on Los Angeles-, Seawolf-, and Ohio-class nuclear submarines of the US Navy. The 38 8-1/8 has been in continuous production since its development in 1938, and is currently manufactured by a descendant of Fairbanks-Morse, FMDefense, in Beloit, Wisconsin.

The Michel engine was an unusual form of opposed-piston engine. It was unique in that its cylinders, instead of being open-ended cylinders containing two pistons, were instead joined in a Y-shape and had three pistons working within them.

<span class="mw-page-title-main">Internal combustion engine</span> Engine in which the combustion of a fuel occurs with an oxidizer in a combustion chamber

An internal combustion engine is a heat engine in which the combustion of a fuel occurs with an oxidizer in a combustion chamber that is an integral part of the working fluid flow circuit. In an internal combustion engine, the expansion of the high-temperature and high-pressure gases produced by combustion applies direct force to some component of the engine. The force is typically applied to pistons, turbine blades, a rotor, or a nozzle. This force moves the component over a distance, transforming chemical energy into kinetic energy which is used to propel, move or power whatever the engine is attached to.

The Diesel Air Dair 100 is an opposed-piston diesel aircraft engine, designed and produced by Diesel Air Ltd of Olney, Buckinghamshire for use in airships, home-built kitplanes and light aircraft. The prototype was built in the 1990s and exhibited it at PFA airshows. Although Diesel Air engines have been fitted to an AT-10 airship and to a Luscombe 8A monoplane, production numbers have been very limited.

References

  1. 1 2 3 4 Brown, D. K.; Moore, George (2003). Rebuilding the Royal Navy. Warship design since 1945. Chatham Publishing. ISBN   1-86176-222-4.
  2. "Baby Deltic Project – 49 of 201". Deltic Preservation Society . Archived from the original on 11 June 2011.
  3. Deltics. Haynes Publishing Group. 1985. p. 4.
  4. "A 2,500 hp Two-stroke". Here and There. Flight . Vol. 65, no. 2358. 2 April 1954. p. 392. Retrieved 23 December 2009. Powering H.M. fast patrol boat Dark Hunter, launched on March 18th, is a Napier Deltic engine. An opposed-piston two-stroke diesel, it develops 2,500 hp (1,900 kW); its power/weight ratio 4.2  lb/hp (2.6  kg/kW) is said to be the highest ever achieved in a marine diesel.
  5. Vessey 1997, p. 102.
  6. Vessey 1997, p. 104.
  7. Chamberlin 1963.
  8. "The Napier Deltic Engine". Diesel Railway Traction . December 1955. pp. 363–370.
  9. Vessey 1997, p. 110.
  10. Webb 1982, p. 50.
  11. Deltics reunited! All six survivors meet up again after 24 years Rail issue 547 30 August 2006 page 57
  12. "Soaking Behemoth – The Mack Super Pumper Was A Locomotive Engined Fire Fighter That Could Extinguish Hell Itself (And Often Did)" . Retrieved 18 October 2018.
  13. Webb 1982.
  14. 1 2 Boyle 2000, p. 121.
  15. Vessey 1997, pp. 107–108.
  16. Boyle 2000, p. 221.

Further reading