Oblimersen

Last updated
Oblimersen
Clinical data
Trade names Genasense
Other namesG3139
ATC code
Legal status
Legal status
  • Not marketed
Identifiers
CAS Number
PubChem CID
ChemSpider
UNII
CompTox Dashboard (EPA)
Chemical and physical data
Formula C172H221N62O91P17S17
Molar mass 5684.58 g·mol−1
3D model (JSmol)
  • Cc1cn(c(=O)[nH]c1=O)[C@H]2C[C@@H]([C@H](O2)COP(=O)(O[C@H]3C[C@@H](O[C@@H]3COP(=O)(O[C@H]4C[C@@H](O[C@@H]4COP(=O)(O[C@H]5C[C@@H](O[C@@H]5COP(=O)(O[C@H]6C[C@@H](O[C@@H]6COP(=O)(O[C@H]7C[C@@H](O[C@@H]7COP(=O)(O[C@H]8C[C@@H](O[C@@H]8COP(=O)(O[C@H]9C[C@@H](O[C@@H]9COP(=O)(O[C@H]1C[C@@H](O[C@@H]1COP(=O)(O[C@H]1C[C@@H](O[C@@H]1COP(=O)(O[C@H]1C[C@@H](O[C@@H]1COP(=O)(O[C@H]1C[C@@H](O[C@@H]1COP(=O)(O[C@H]1C[C@@H](O[C@@H]1COP(=O)(O[C@H]1C[C@@H](O[C@@H]1COP(=O)(O[C@H]1C[C@@H](O[C@@H]1COP(=O)(O[C@H]1C[C@@H](O[C@@H]1COP(=O)(O[C@H]1C[C@@H](O[C@@H]1COP(=O)(O[C@H]1C[C@@H](O[C@@H]1CO)n1cc(c(=O)[nH]c1=O)C)S)n1ccc(nc1=O)N)S)n1cc(c(=O)[nH]c1=O)C)S)n1ccc(nc1=O)N)S)n1ccc(nc1=O)N)S)n1ccc(nc1=O)N)S)n1cnc2c1ncnc2N)S)n1cnc2c1nc([nH]c2=O)N)S)n1ccc(nc1=O)N)S)n1cnc2c1nc([nH]c2=O)N)S)n1cc(c(=O)[nH]c1=O)C)S)n1cnc2c1nc([nH]c2=O)N)S)n1ccc(nc1=O)N)S)n1cnc2c1nc([nH]c2=O)N)S)n1ccc(nc1=O)N)S)n1ccc(nc1=O)N)S)n1cnc2c1ncnc2N)S)O
  • InChI=1S/C172H221N62O91P17S17/c1-69-39-225(169(253)213-149(69)237)117-21-73(236)92(292-117)44-274-326(257,343)320-85-33-129(229-63-191-135-141(181)187-61-189-143(135)229)303-103(85)55-285-332(263,349)314-79-27-122(221-17-9-113(177)201-165(221)249)295-95(79)47-278-330(261,347)312-78-26-121(220-16-8-112(176)200-164(220)248)298-98(78)50-280-338(269,355)322-87-35-131(231-65-193-137-145(231)205-157(183)209-153(137)241)305-105(87)57-287-334(265,351)316-81-29-124(223-19-11-115(179)203-167(223)251)299-99(81)51-281-339(270,356)323-88-36-132(232-66-194-138-146(232)206-158(184)210-154(138)242)307-107(88)59-289-337(268,354)319-84-32-128(228-42-72(4)152(240)216-172(228)256)302-102(84)54-284-341(272,358)325-90-38-134(234-68-196-140-148(234)208-160(186)212-156(140)244)306-106(90)58-288-335(266,352)317-82-30-125(224-20-12-116(180)204-168(224)252)300-100(82)52-282-340(271,357)324-89-37-133(233-67-195-139-147(233)207-159(185)211-155(139)243)308-108(89)60-290-342(273,359)321-86-34-130(230-64-192-136-142(182)188-62-190-144(136)230)304-104(86)56-286-333(264,350)315-80-28-123(222-18-10-114(178)202-166(222)250)296-96(80)48-277-328(259,345)310-76-24-119(218-14-6-110(174)198-162(218)246)294-94(76)46-276-329(260,346)311-77-25-120(219-15-7-111(175)199-163(219)247)297-97(77)49-279-336(267,353)318-83-31-127(227-41-71(3)151(239)215-171(227)255)301-101(83)53-283-331(262,348)313-75-23-118(217-13-5-109(173)197-161(217)245)293-93(75)45-275-327(258,344)309-74-22-126(291-91(74)43-235)226-40-70(2)150(238)214-170(226)254/h5-20,39-42,61-68,73-108,117-134,235-236H,21-38,43-60H2,1-4H3,(H,257,343)(H,258,344)(H,259,345)(H,260,346)(H,261,347)(H,262,348)(H,263,349)(H,264,350)(H,265,351)(H,266,352)(H,267,353)(H,268,354)(H,269,355)(H,270,356)(H,271,357)(H,272,358)(H,273,359)(H2,173,197,245)(H2,174,198,246)(H2,175,199,247)(H2,176,200,248)(H2,177,201,249)(H2,178,202,250)(H2,179,203,251)(H2,180,204,252)(H2,181,187,189)(H2,182,188,190)(H,213,237,253)(H,214,238,254)(H,215,239,255)(H,216,240,256)(H3,183,205,209,241)(H3,184,206,210,242)(H3,185,207,211,243)(H3,186,208,212,244)/t73-,74-,75-,76-,77-,78-,79-,80-,81-,82-,83-,84-,85-,86-,87-,88-,89-,90-,91+,92+,93+,94+,95+,96+,97+,98+,99+,100+,101+,102+,103+,104+,105+,106+,107+,108+,117+,118+,119+,120+,121+,122+,123+,124+,125+,126+,127+,128+,129+,130+,131+,132+,133+,134+,326?,327?,328?,329?,330?,331?,332?,333?,334?,335?,336?,337?,338?,339?,340?,341?,342?/m0/s1 X mark.svgN
  • Key:MIMNFCVQODTQDP-NDLVEFNKSA-N X mark.svgN
 X mark.svgNYes check.svgY  (what is this?)    (verify)

Oblimersen (INN, trade name Genasense; also known as Augmerosen and bcl-2 antisense oligodeoxynucleotide G3139) is an antisense oligodeoxyribonucleotide being studied as a possible treatment for several types of cancer, including chronic lymphocytic leukemia, B-cell lymphoma, and breast cancer. It may kill cancer cells by blocking the production of Bcl-2—a protein that makes cancer cells live longer—and by making them more sensitive to chemotherapy.

Contents

History

The antisense oligonucleotide drug oblimersen was developed by Genta Incorporated to target Bcl-2. An antisense DNA or RNA strand is non-coding and complementary to the coding strand (which is the template for producing respectively RNA or protein). An antisense drug is a short sequence of RNA which hybridises with and inactivates mRNA, preventing the protein from being formed.[ citation needed ]

It was shown that the proliferation of human lymphoma cells (with t(14;18) translocation) could be inhibited by antisense RNA targeted at the start codon region of Bcl-2 mRNA. In vitro studies led to the identification of oblimersen, which is complementary to the first 6 codons of Bcl-2 mRNA. [1]

These have shown successful results in Phase I/II trials for lymphoma, and a large Phase III trial was launched in 2004. [2]

By the first quarter 2010, the drug had not received FDA approval due to disappointing results in a melanoma trial. Although its safety and efficacy have not been established for any use, Genta Incorporated still[ when? ] claims on its website that studies are currently under way to examine the potential role of oblimersen in a variety of clinical indications.

Related Research Articles

Oligonucleotides are short DNA or RNA molecules, oligomers, that have a wide range of applications in genetic testing, research, and forensics. Commonly made in the laboratory by solid-phase chemical synthesis, these small fragments of nucleic acids can be manufactured as single-stranded molecules with any user-specified sequence, and so are vital for artificial gene synthesis, polymerase chain reaction (PCR), DNA sequencing, molecular cloning and as molecular probes. In nature, oligonucleotides are usually found as small RNA molecules that function in the regulation of gene expression, or are degradation intermediates derived from the breakdown of larger nucleic acid molecules.

<span class="mw-page-title-main">Chronic lymphocytic leukemia</span> Medical condition

Chronic lymphocytic leukemia (CLL) is a type of cancer in which the bone marrow makes too many lymphocytes. Early on, there are typically no symptoms. Later, non-painful lymph node swelling, feeling tired, fever, night sweats, or weight loss for no clear reason may occur. Enlargement of the spleen and low red blood cells (anemia) may also occur. It typically worsens gradually over years.

<span class="mw-page-title-main">Locked nucleic acid</span> Biological molecule

A locked nucleic acid (LNA), also known as bridged nucleic acid (BNA), and often referred to as inaccessible RNA, is a modified RNA nucleotide in which the ribose moiety is modified with an extra bridge connecting the 2' oxygen and 4' carbon. The bridge "locks" the ribose in the 3'-endo (North) conformation, which is often found in the A-form duplexes. This structure provides for increased stability against enzymatic degradation. LNA also offers improved specificity and affinity in base-pairing as a monomer or a constituent of an oligonucleotide. LNA nucleotides can be mixed with DNA or RNA residues in a oligonucleotide.

<span class="mw-page-title-main">Bcl-2</span> Protein found in humans

Bcl-2, encoded in humans by the BCL2 gene, is the founding member of the Bcl-2 family of regulator proteins that regulate cell death (apoptosis), by either inhibiting (anti-apoptotic) or inducing (pro-apoptotic) apoptosis. It was the first apoptosis regulator identified in any organism.

In genetics, a nonsense mutation is a point mutation in a sequence of DNA that results in a nonsense codon, or a premature stop codon in the transcribed mRNA, and leads to a truncated, incomplete, and possibly nonfunctional protein product. Nonsense mutation is not always harmful, the functional effect of a nonsense mutation depends on many aspects, such as the location of the stop codon within the coding DNA. For example, the effect of a nonsense mutation depends on the proximity of the nonsense mutation to the original stop codon, and the degree to which functional subdomains of the protein are affected. As nonsense mutations leads to premature termination of polypeptide chains; they are also called chain termination mutations.

Antisense therapy is a form of treatment that uses antisense oligonucleotides (ASOs) to target messenger RNA (mRNA). ASOs are capable of altering mRNA expression through a variety of mechanisms, including ribonuclease H mediated decay of the pre-mRNA, direct steric blockage, and exon content modulation through splicing site binding on pre-mRNA. Several ASOs have been approved in the United States, the European Union, and elsewhere.

<span class="mw-page-title-main">Antisense RNA</span>

Antisense RNA (asRNA), also referred to as antisense transcript, natural antisense transcript (NAT) or antisense oligonucleotide, is a single stranded RNA that is complementary to a protein coding messenger RNA (mRNA) with which it hybridizes, and thereby blocks its translation into protein. The asRNAs have been found in both prokaryotes and eukaryotes, and can be classified into short and long non-coding RNAs (ncRNAs). The primary function of asRNA is regulating gene expression. asRNAs may also be produced synthetically and have found wide spread use as research tools for gene knockdown. They may also have therapeutic applications.

Lymphoid leukemias are a group of leukemias affecting circulating lymphocytes, a type of white blood cell. The lymphocytic leukemias are closely related to lymphomas of the lymphocytes, to the point that some of them are unitary disease entities that can be called by either name. Such diseases are all lymphoproliferative disorders. Most lymphoid leukemias involve a particular subtype of lymphocytes, the B cells.

In molecular biology and genetics, the sense of a nucleic acid molecule, particularly of a strand of DNA or RNA, refers to the nature of the roles of the strand and its complement in specifying a sequence of amino acids. Depending on the context, sense may have slightly different meanings. For example, the negative-sense strand of DNA is equivalent to the template strand, whereas the positive-sense strand is the non-template strand whose nucleotide sequence is equivalent to the sequence of the mRNA transcript.

Richter's transformation (RT), also known as Richter's syndrome, is the conversion of chronic lymphocytic leukemia (CLL) or its variant, small lymphocytic lymphoma (SLL), into a new and more aggressively malignant disease. CLL is the circulation of malignant B lymphocytes with or without the infiltration of these cells into lymphatic or other tissues while SLL is the infiltration of these malignant B lymphocytes into lymphatic and/or other tissues with little or no circulation of these cells in the blood. CLL along with its SLL variant are grouped together in the term CLL/SLL.

<span class="mw-page-title-main">Computational gene</span>

A computational gene is a molecular automaton consisting of a structural part and a functional part; and its design is such that it might work in a cellular environment.

<span class="mw-page-title-main">Bendamustine</span> Chemical compound

Bendamustine, sold under the brand name Treanda among others, is a chemotherapy medication used in the treatment of chronic lymphocytic leukemia (CLL), multiple myeloma, and non-Hodgkin's lymphoma. It is given by injection into a vein.

<span class="mw-page-title-main">Genta (company)</span>

Genta Incorporated was a biopharmaceutical company started in La Jolla, California, which discovered and developed innovative drugs for the treatment of patients with cancer. Founded in 1989 by a highly skilled entrepreneur, the company focused on a novel technology known as antisense, which targets gene products that are associated with the onset and progression of serious diseases. At that time, only Ionis Pharmaceuticals, Inc. was conducting significant research with this technology. Antisense is a short span of oligonucleotides – modified DNA structures ranging from about 12-24 bases that selectively bind to specific RNA. The intent is to block expression of an aberrant protein that contributes to the disease of interest. Genta in-licensed three different antisense molecules that blocked Bcl-2, a fibroblast growth factor (FGF), and the gene c-myb, respectively.

<span class="mw-page-title-main">Ibrutinib</span> Medication used in cancer treatment

Ibrutinib, sold under the brand name Imbruvica among others, is a small molecule drug that inhibits B-cell proliferation and survival by irreversibly binding the protein Bruton's tyrosine kinase (BTK). Blocking BTK inhibits the B-cell receptor pathway, which is often aberrantly active in B cell cancers. Ibrutinib is therefore used to treat such cancers, including mantle cell lymphoma, chronic lymphocytic leukemia, and Waldenström's macroglobulinemia. Ibrutinib also binds to C-terminal Src Kinases. These are off-target receptors for the BTK inhibitor. Ibrutinib binds to these receptors and inhibits the kinase from promoting cell differentiation and growth. This leads to many different side effects like left atrial enlargement and atrial fibrillation during the treatment of Chronic Lymphocytic Leukemia.

Anti-miRNA oligonucleotides have many uses in cellular mechanics. These synthetically designed molecules are used to neutralize microRNA (miRNA) function in cells for desired responses. miRNA are complementary sequences to mRNA that are involved in the cleavage of RNA or the suppression of the translation. By controlling the miRNA that regulate mRNAs in cells, AMOs can be used as further regulation as well as for therapeutic treatment for certain cellular disorders. This regulation can occur through a steric blocking mechanism as well as hybridization to miRNA. These interactions, within the body between miRNA and AMOs, can be for therapeutics in disorders in which over/under expression occurs or aberrations in miRNA lead to coding issues. Some of the miRNA linked disorders that are encountered in the humans include cancers, muscular diseases, autoimmune disorders, and viruses. In order to determine the functionality of certain AMOs, the AMO/miRNA binding expression must be measured against the expressions of the isolated miRNA. The direct detection of differing levels of genetic expression allow the relationship between AMOs and miRNAs to be shown. This can be detected through luciferase activity. Understanding the miRNA sequences involved in these diseases can allow us to use anti miRNA Oligonucleotides to disrupt pathways that lead to the under/over expression of proteins of cells that can cause symptoms for these diseases.

<span class="mw-page-title-main">Venetoclax</span> Medication

Venetoclax, sold under the brand names Venclexta and Venclyxto, is a medication used to treat adults with chronic lymphocytic leukemia (CLL), small lymphocytic lymphoma (SLL), or acute myeloid leukemia (AML).

<span class="mw-page-title-main">Custirsen</span> Chemical compound

Custirsen, with aliases including custirsen sodium, OGX-011, and CC-8490, is an investigational drug that is under clinical testing for the treatment of cancer. It is an antisense oligonucleotide (ASO) targeting clusterin expression. In metastatic prostate cancer, custirsen showed no benefit in improving overall survival.

RNA therapeutics are a new class of medications based on ribonucleic acid (RNA). Research has been working on clinical use since the 1990s, with significant success in cancer therapy in the early 2010s. In 2020 and 2021, mRNA vaccines have been developed globally for use in combating the coronavirus disease. The Pfizer–BioNTech COVID-19 vaccine was the first mRNA vaccine approved by a medicines regulator, followed by the Moderna COVID-19 vaccine, and others.

Gapmers are short DNA antisense oligonucleotide structures with RNA-like segments on both sides of the sequence. These linear pieces of genetic information are designed to hybridize to a target piece of RNA and silence the gene through the induction of RNase H cleavage. Binding of the gapmer to the target has a higher affinity due to the modified RNA flanking regions, as well as resistance to degradation by nucleases. Gapmers are currently being developed as therapeutics for a variety of cancers, viruses, and other chronic genetic disorders.

ncRNA therapy

A majority of the human genome is made up of non-protein coding DNA. It infers that such sequences are not commonly employed to encode for a protein. However, even though these regions do not code for protein, they have other functions and carry necessary regulatory information.They can be classified based on the size of the ncRNA. Small noncoding RNA is usually categorized as being under 200 bp in length, whereas long noncoding RNA is greater than 200bp. In addition, they can be categorized by their function within the cell; Infrastructural and Regulatory ncRNAs. Infrastructural ncRNAs seem to have a housekeeping role in translation and splicing and include species such as rRNA, tRNA, snRNA.Regulatory ncRNAs are involved in the modification of other RNAs.

References

  1. Dias N, Stein CA (November 2002). "Potential roles of antisense oligonucleotides in cancer therapy. The example of Bcl-2 antisense oligonucleotides". European Journal of Pharmaceutics and Biopharmaceutics. 54 (3): 263–9. doi:10.1016/S0939-6411(02)00060-7. PMID   12445555.
  2. Mavromatis BH, Cheson BD (June 2004). "Novel therapies for chronic lymphocytic leukemia". Blood Reviews. 18 (2): 137–48. doi:10.1016/S0268-960X(03)00039-0. PMID   15010151.