Octenidine dihydrochloride

Last updated
Octenidine dihydrochloride [1]
Octenidine dihydrochloride.png
Names
IUPAC name
1,1′-(Decane-1,10-diyl)bis(N-octylpyridin-4(1H)-imine)—hydrogen chloride (1/2)
Other names
N,N′-(decane-1,10-diyldi-1(4H)-pyridyl-4-ylidene)bis(octylammonium) dichloride
Identifiers
3D model (JSmol)
ChEBI
ChEMBL
ChemSpider
ECHA InfoCard 100.068.035 OOjs UI icon edit-ltr-progressive.svg
EC Number
  • 274-861-8
PubChem CID
UNII
  • InChI=1S/C36H62N4.2ClH/c1-3-5-7-9-15-19-27-37-35-23-31-39(32-24-35)29-21-17-13-11-12-14-18-22-30-40-33-25-36(26-34-40)38-28-20-16-10-8-6-4-2;;/h23-26,31-34H,3-22,27-30H2,1-2H3;2*1H
    Key: SMGTYJPMKXNQFY-UHFFFAOYSA-N
  • InChI=1/C36H62N4.2ClH/c1-3-5-7-9-15-19-27-37-35-23-31-39(32-24-35)29-21-17-13-11-12-14-18-22-30-40-33-25-36(26-34-40)38-28-20-16-10-8-6-4-2;;/h23-26,31-34H,3-22,27-30H2,1-2H3;2*1H
  • CCCCCCCCN=C1C=CN(C=C1)CCCCCCCCCCN2C=CC(=NCCCCCCCC)C=C2.Cl.Cl
Properties
C36H64Cl2N4
Molar mass 623.84 g·mol−1
Pharmacology
R02AA21 ( WHO ) A01AB24 ( WHO ), QA01AB24 ( WHO ), combination codes: D08AJ57 ( WHO ), G01AX66 ( WHO )
Legal status
  • EU:Rx-only [2]
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

Octenidine dihydrochloride is a cationic surfactant, with a gemini-surfactant structure, derived from pyridine. It is active against Gram-positive and Gram-negative bacteria. Since 1987, it has been used primarily in Europe as an antiseptic prior to medical procedures, including on neonates.

Contents

Medical uses

Since 1987, octenidine has been used in Europe as an antiseptic, in concentrations of 0.1 to 2.0%.[ citation needed ] It is a substitute for chlorhexidine, with respect to its slow action and concerns about the carcinogenic impurity 4-chloroaniline.[ citation needed ] Octenidine preparations are less expensive than chlorhexidine and no resistance had been observed as of 2007. [3] They may contain the antiseptic phenoxyethanol. [4] It is not listed in the Annex V of authorized preservatives of the European Cosmetic Regulation 1223/2009.

Efficacy

Octenidine dihydrochloride is active against Gram-positive and Gram-negative bacteria. [5]

In vitro suspension tests with 5 minute exposure time have shown that octenidine requires lower effective concentrations than chlorhexidine to kill common bacteria like Staphylococcus aureus, Escherichia coli, Proteus mirabilis and the yeast Candida albicans. [6]

Comparison between octenidine and chlorhexidine determined by the suspension test after 5 minutes of exposure.
 Effective concentration, %
Octenidine dihydrochlorideChlorhexidine digluconate
Staphylococcus aureus 0.025>0.2
Escherichia coli 0.0250.1
Proteus mirabilis 0.025>0.2
Candida albicans 0.010.025
Pseudomonas aeruginosa 0.025>0.2

An observational study of using octenidine on the skin of patients in 17 intensive care units in Berlin in 2014 showed decreasing nosocomial infection rates. [7]

In a survey of German neonatal intensive-care units octenidine without phenoxyethanol and octenidine were the most common skin antiseptics used for intensive-care procedures. Skin complications included blistering, necrosis and scarring, which has not been previously reported in this population. [4]

In a 2016 study of pediatric cancer patients with long-term central venous access devices using octenidine/isopropanol for the disinfection of catheter hubs and 3-way stopcocks as part of a bundled intervention, the risk of bloodstream infections decreased. [8]

Safety

Octenidine is absorbed neither through the skin, nor through mucous membranes, nor via wounds and does not pass the placental barrier. However, cation-active compounds cause local irritation and are extremely poisonous when administered parenterally. [6]

In a 2016 in vitro study of mouth rinses on gingival fibroblasts and epithelial cells octenidine showed a less cytotoxic effect, especially on epithelial cells, compared to chlorhexidine after 15 min. [9] Wound irrigation with octenidine has caused severe complications in dogs, [10] aseptic necrosis and chronic inflammation in penetrating hand wounds in humans. [11] [12]

Related Research Articles

A bactericide or bacteriocide, sometimes abbreviated Bcidal, is a substance which kills bacteria. Bactericides are disinfectants, antiseptics, or antibiotics. However, material surfaces can also have bactericidal properties based solely on their physical surface structure, as for example biomaterials like insect wings.

An antiseptic is an antimicrobial substance or compound that is applied to living tissue to reduce the possibility of sepsis, infection or putrefaction. Antiseptics are generally distinguished from antibiotics by the latter's ability to safely destroy bacteria within the body, and from disinfectants, which destroy microorganisms found on non-living objects.

<span class="mw-page-title-main">Central venous catheter</span> A tubular device placed in a large vein used to administer medicines

A central venous catheter (CVC), also known as a central line (c-line), central venous line, or central venous access catheter, is a catheter placed into a large vein. It is a form of venous access. Placement of larger catheters in more centrally located veins is often needed in critically ill patients, or in those requiring prolonged intravenous therapies, for more reliable vascular access. These catheters are commonly placed in veins in the neck, chest, groin, or through veins in the arms.

Bloodstream infections (BSIs) are infections of blood caused by blood-borne pathogens. The detection of microbes in the blood is always abnormal. A bloodstream infection is different from sepsis, which is characterized by severe inflammatory or immune responses of the host organism to pathogens.

<span class="mw-page-title-main">Linezolid</span> Antibiotic medication

Linezolid is an antibiotic used for the treatment of infections caused by Gram-positive bacteria that are resistant to other antibiotics. Linezolid is active against most Gram-positive bacteria that cause disease, including streptococci, vancomycin-resistant enterococci (VRE), and methicillin-resistant Staphylococcus aureus (MRSA). The main uses are infections of the skin and pneumonia although it may be used for a variety of other infections including drug-resistant tuberculosis. It is used either by injection into a vein or by mouth.

<i>Klebsiella pneumoniae</i> Species of bacterium

Klebsiella pneumoniae is a Gram-negative, non-motile, encapsulated, lactose-fermenting, facultative anaerobic, rod-shaped bacterium. It appears as a mucoid lactose fermenter on MacConkey agar.

<span class="mw-page-title-main">Hospital-acquired infection</span> Infection that is acquired in a hospital or other health care facility

A hospital-acquired infection, also known as a nosocomial infection, is an infection that is acquired in a hospital or other healthcare facility. To emphasize both hospital and nonhospital settings, it is sometimes instead called a healthcare-associated infection. Such an infection can be acquired in a hospital, nursing home, rehabilitation facility, outpatient clinic, diagnostic laboratory or other clinical settings. A number of dynamic processes can bring contamination into operating rooms and other areas within nosocomial settings. Infection is spread to the susceptible patient in the clinical setting by various means. Healthcare staff also spread infection, in addition to contaminated equipment, bed linens, or air droplets. The infection can originate from the outside environment, another infected patient, staff that may be infected, or in some cases, the source of the infection cannot be determined. In some cases the microorganism originates from the patient's own skin microbiota, becoming opportunistic after surgery or other procedures that compromise the protective skin barrier. Though the patient may have contracted the infection from their own skin, the infection is still considered nosocomial since it develops in the health care setting. Nosocomial infection tends to lack evidence that it was present when the patient entered the healthcare setting, thus meaning it was acquired post-admission.

<span class="mw-page-title-main">Chlorhexidine</span> Disinfectant and antiseptic

Chlorhexidine is a disinfectant and antiseptic with the molecular formula C22H30Cl2N10, which is used for skin disinfection before surgery and to sterilize surgical instruments. It is also used for cleaning wounds, preventing dental plaque, treating yeast infections of the mouth, and to keep urinary catheters from blocking. It is used as a liquid or a powder. It is commonly used in salt form, either the gluconate or the acetate.

<span class="mw-page-title-main">Blood culture</span> Test to detect bloodstream infections

A blood culture is a medical laboratory test used to detect bacteria or fungi in a person's blood. Under normal conditions, the blood does not contain microorganisms: their presence can indicate a bloodstream infection such as bacteremia or fungemia, which in severe cases may result in sepsis. By culturing the blood, microbes can be identified and tested for resistance to antimicrobial drugs, which allows clinicians to provide an effective treatment.

<span class="mw-page-title-main">Povidone-iodine</span> Antiseptic solution

Povidone-iodine (PVP-I), also known as iodopovidone, is an antiseptic used for skin disinfection before and after surgery. It may be used both to disinfect the hands of healthcare providers and the skin of the person they are caring for. It may also be used for minor wounds. It may be applied to the skin as a liquid, an ointment or a powder.

<span class="mw-page-title-main">Asepsis</span> Absence of disease-causing microorganisms

Asepsis is the state of being free from disease-causing micro-organisms. There are two categories of asepsis: medical and surgical. The modern day notion of asepsis is derived from the older antiseptic techniques, a shift initiated by different individuals in the 19th century who introduced practices such as the sterilizing of surgical tools and the wearing of surgical gloves during operations. The goal of asepsis is to eliminate infection, not to achieve sterility. Ideally, a surgical field is sterile, meaning it is free of all biological contaminants, not just those that can cause disease, putrefaction, or fermentation. Even in an aseptic state, a condition of sterile inflammation may develop. The term often refers to those practices used to promote or induce asepsis in an operative field of surgery or medicine to prevent infection.

<span class="mw-page-title-main">Piperacillin</span> Antibiotic medication

Piperacillin is a broad-spectrum β-lactam antibiotic of the ureidopenicillin class. The chemical structure of piperacillin and other ureidopenicillins incorporates a polar side chain that enhances penetration into Gram-negative bacteria and reduces susceptibility to cleavage by Gram-negative beta lactamase enzymes. These properties confer activity against the important hospital pathogen Pseudomonas aeruginosa. Thus piperacillin is sometimes referred to as an "anti-pseudomonal penicillin".

<i>Stenotrophomonas maltophilia</i> Species of bacterium

Stenotrophomonas maltophilia is an aerobic, nonfermentative, Gram-negative bacterium. It is an uncommon bacterium and human infection is difficult to treat. Initially classified as Bacterium bookeri, then renamed Pseudomonas maltophilia, S. maltophilia was also grouped in the genus Xanthomonas before eventually becoming the type species of the genus Stenotrophomonas in 1993.

<span class="mw-page-title-main">Temocillin</span> Chemical compound

Temocillin is a β-lactamase-resistant penicillin introduced by Beecham, marketed by Eumedica Pharmaceuticals as Negaban. It is used primarily for the treatment of multiple drug-resistant, Gram-negative bacteria.
It is a 6-methoxy penicillin; it is also a carboxypenicillin.

<span class="mw-page-title-main">Cetylpyridinium chloride</span> Chemical compound

Cetylpyridinium chloride (CPC) is a cationic quaternary ammonium compound used in some types of mouthwashes, toothpastes, lozenges, throat sprays, breath sprays, and nasal sprays. It is an antiseptic that kills bacteria and other microorganisms. It has been shown to be effective in preventing dental plaque and reducing gingivitis. It has also been used as an ingredient in certain pesticides. Though one study seems to indicate cetylpyridinium chloride does not cause brown tooth stains, at least one mouthwash containing CPC as an active ingredient bears the warning label "In some cases, antimicrobial rinses may cause surface staining to teeth," following a failed class-action lawsuit brought by customers whose teeth were stained.

<i>Acinetobacter baumannii</i> Species of bacterium

Acinetobacter baumannii is a typically short, almost round, rod-shaped (coccobacillus) Gram-negative bacterium. It is named after the bacteriologist Paul Baumann. It can be an opportunistic pathogen in humans, affecting people with compromised immune systems, and is becoming increasingly important as a hospital-derived (nosocomial) infection. While other species of the genus Acinetobacter are often found in soil samples, it is almost exclusively isolated from hospital environments. Although occasionally it has been found in environmental soil and water samples, its natural habitat is still not known.

<span class="mw-page-title-main">Oritavancin</span> Pharmaceutical drug

Oritavancin, sold under the brand name Orbactiv among others, is a semisynthetic glycopeptide antibiotic medication for the treatment of serious Gram-positive bacterial infections. Its chemical structure as a lipoglycopeptide is similar to vancomycin.

<span class="mw-page-title-main">Taurolidine</span> Antimicrobial compound

Taurolidine is an antimicrobial that is used to prevent infections in catheters. Side effects and the induction of bacterial resistance is uncommon. It is also being studied as a treatment for cancer.

Wound bed preparation (WBP) is a systematic approach to wound management by identifying and removing barriers to healing. The concept was originally developed in plastic surgery. It includes wound assessment, debridement, moisture balance, bacterial balance, and wound cleaning.

Decolonization, also bacterial decolonization, is a medical intervention that attempts to rid a patient of an antimicrobial resistant pathogen, such as methicillin-resistant Staphylococcus aureus (MRSA) or antifungal-resistant Candida.

References

  1. EC no. 274-861-8, ECHA
  2. "List of nationally authorised medicinal products - Active substance: octenidine" (PDF). www.ema.europa.eu.
  3. Al-Doori, Z.; Goroncy-Bermes, P.; Gemmell, C. G.; Morrison, D. (June 2007). "Low-level exposure of MRSA to octenidine dihydrochloride does not select for resistance". The Journal of Antimicrobial Chemotherapy. 59 (6): 1280–1281. doi: 10.1093/jac/dkm092 . ISSN   0305-7453. PMID   17439976.
  4. 1 2 C.D. Biermann; A. Kribs; B. Roth; I. Tantcheva-Poor (2016). "Use and Cutaneous Side Effects of Skin Antiseptics in Extremely Low Birth Weight Infants - A Retrospective Survey of the German NICUs". Klinische Pädiatrie. 228 (4): 208–12. doi:10.1055/s-0042-104122. PMID   27362412. S2CID   5099338.
  5. Sedlock, D M; Bailey, D M (December 1985). "Microbicidal activity of octenidine hydrochloride, a new alkanediylbis[pyridine] germicidal agent". Antimicrobial Agents and Chemotherapy. 28 (6): 786–790. doi: 10.1128/AAC.28.6.786 . ISSN   0066-4804. PMC   180329 . PMID   3909955.
  6. 1 2 Hans-P. Harke (2007), "Disinfectants", Ullmann's Encyclopedia of Industrial Chemistry (7th ed.), Wiley, pp. 1–17, doi:10.1002/14356007.a08_551
  7. Gastmeier P, Kämpf K, Behnke M, Geffers C, Schwab F (2016). "An observational study of the universal use of octenidine to decrease nosocomial bloodstream infections and MDR organisms". Journal of Antimicrobial Chemotherapy. 71 (9): 2569–76. doi: 10.1093/jac/dkw170 . PMID   27234462.
  8. Furtwängler, Rhoikos; Laux, Carolin; Graf, Norbert; Simon, Arne (2015). "Impact of a modified Broviac maintenance care bundle on bloodstream infections in paediatric cancer patients". GMS Hygiene and Infection Control. 10: Doc15. doi:10.3205/dgkh000258. PMC   4657435 . PMID   26605135.
  9. Schmidt, J.; Zyba, V.; Jung, K.; Rinke, S.; Haak, R.; Mausberg, R. F.; Ziebolz, D. (2016). "Cytotoxic effects of octenidine mouth rinse on human fibroblasts and epithelial cells – an in vitro study". Drug and Chemical Toxicology. 39 (3): 322–330. doi:10.3109/01480545.2015.1121274. PMID   26654138. S2CID   19546288.
  10. Kaiser, S.; Kramer, M.; Thiel, C. (2015). "Severe complications after non-intended usage of octenidine dihydrochloride. A case series with four dogs". Tierärztliche Praxis. Ausgabe K, Kleintiere/Heimtiere. 43 (5): 291–298. doi:10.15654/TPK-150029. PMID   26353826. S2CID   80926611.
  11. Lachapelle, JM. (2014). "A comparison of the irritant and allergenic properties of antiseptics". European Journal of Dermatology. 24 (1): 3–9. doi: 10.1684/ejd.2013.2198 . PMID   24492204.
  12. Franz, T.; Vögelin, E. (2012). "Aseptic tissue necrosis and chronic inflammation after irrigation of penetrating hand wounds using Octenisept®" . The Journal of Hand Surgery, European Volume. 37 (1): 61–64. doi:10.1177/1753193411414353. PMID   21816890. S2CID   29175202.