Mercury(II) iodide

Last updated
Mercury(II) iodide
Mercury(II)-iodide-xtal-3D-SF-A.png
Mercury(II) iodide (α form)
Mercury(II)-iodide-xtal-3D-SF-B.png
Mercury(II) iodide (β form)
Mercury iodide.jpg
β (left) and α (right) forms
Names
IUPAC name
Mercury(II) iodide
Other names
Mercury diiodide
Mercuric iodide
Red mercury (α form only)
Coccinite (α form only)
Identifiers
3D model (JSmol)
ChEBI
ChemSpider
DrugBank
ECHA InfoCard 100.028.976 OOjs UI icon edit-ltr-progressive.svg
EC Number
  • 231-873-8
277788
PubChem CID
UNII
  • InChI=1S/Hg.2HI/h;2*1H/q+2;;/p-2 Yes check.svgY
    Key: YFDLHELOZYVNJE-UHFFFAOYSA-L Yes check.svgY
  • InChI=1/Hg.2HI/h;2*1H/q+2;;/p-2
    Key: YFDLHELOZYVNJE-NUQVWONBAE
  • I[Hg]I
Properties
HgI2
Molar mass 454.40 g/mol
Appearanceorange-red powder
Odor odorless
Density 6.36 g/cm3
Melting point 259 °C (498 °F; 532 K)
Boiling point 350 °C (662 °F; 623 K)
6 mg/100 mL
2.9×1029 [1]
Solubility slightly soluble in alcohol, ether, acetone, chloroform, ethyl acetate, CS2, olive oil, castor oil

Soluble in excess KI(Potassium iodide) forming soluble complex K2[Hg2I4 ](Potassium tetraiodomercurate(II)) also known as Nessler's reagent

Contents

128.6·10−6 cm3/mol
2.455
Structure
Tetrahedral
Pharmacology
D08AK30 ( WHO )
Hazards
GHS labelling:
GHS-pictogram-skull.svg GHS-pictogram-silhouette.svg GHS-pictogram-pollu.svg
Danger
H300, H310, H330, H373, H410
P260, P262, P264, P270, P271, P273, P280, P284, P301+P310, P302+P350, P304+P340, P310, P314, P320, P321, P322, P330, P361, P363, P391, P403+P233, P405, P501
NFPA 704 (fire diamond)
NFPA 704.svgHealth 3: Short exposure could cause serious temporary or residual injury. E.g. chlorine gasFlammability 0: Will not burn. E.g. waterInstability 0: Normally stable, even under fire exposure conditions, and is not reactive with water. E.g. liquid nitrogenSpecial hazards (white): no code
3
0
0
Flash point Non-flammable
Related compounds
Other anions
Mercury(II) fluoride
Mercury(II) chloride
Mercury(II) bromide
Other cations
Zinc iodide
Cadmium iodide
Related compounds
Mercury(I) iodide
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
X mark.svgN  verify  (what is  Yes check.svgYX mark.svgN ?)

Mercury(II) iodide is a chemical compound with the molecular formula Hg I2. It is typically produced synthetically but can also be found in nature as the extremely rare mineral coccinite. Unlike the related mercury(II) chloride it is hardly soluble in water (<100 ppm).

Production

Mercury(II) iodide is produced by adding an aqueous solution of potassium iodide to an aqueous solution of mercury(II) chloride with stirring; the precipitate is filtered off, washed and dried at 70 °C.

HgCl2 + 2 KI → HgI2 + 2 KCl

Properties

Mercury(II) iodide displays thermochromism; when heated above 126 °C (400 K) it undergoes a phase transition, from the red alpha crystalline form to a pale yellow beta form. As the sample cools, it gradually reacquires its original colour. It has often been used for thermochromism demonstrations. [2] A third form, which is orange, is also known; this can be formed by recrystallisation and is also metastable, eventually converting back to the red alpha form. [3] The various forms can exist in a diverse range of crystal structures and as a result mercury(II) iodide possesses a surprisingly complex phase diagram. [4]

Uses

Mercury(II) iodide crystals grown in Spacelab Crystal in VCGS furnace.jpg
Mercury(II) iodide crystals grown in Spacelab

Mercury(II) iodide is used for preparation of Nessler's reagent, used for detection of presence of ammonia.

Mercury(II) iodide is a semiconductor material, [5] used in some x-ray and gamma ray detection and imaging devices operating at room temperatures. [6]

In veterinary medicine, mercury(II) iodide is used in blister ointments in exostoses, bursal enlargement, etc. [ citation needed ]

It can appear as a precipitate in many reactions.

See also

Related Research Articles

<span class="mw-page-title-main">Silver iodide</span> Chemical compound

Silver iodide is an inorganic compound with the formula AgI. The compound is a bright yellow solid, but samples almost always contain impurities of metallic silver that give a gray coloration. The silver contamination arises because some samples of AgI can be highly photosensitive. This property is exploited in silver-based photography. Silver iodide is also used as an antiseptic and in cloud seeding.

An iodide ion is the ion I. Compounds with iodine in formal oxidation state −1 are called iodides. In everyday life, iodide is most commonly encountered as a component of iodized salt, which many governments mandate. Worldwide, iodine deficiency affects two billion people and is the leading preventable cause of intellectual disability.

<span class="mw-page-title-main">Potassium tetraiodomercurate(II)</span> Chemical compound

Potassium tetraiodomercurate(II) is an inorganic compound with the chemical formula K2[HgI4]. It consists of potassium cations and tetraiodomercurate(II) anions. It is the active agent in Nessler's reagent, used for detection of ammonia.

<span class="mw-page-title-main">Lead(II) iodide</span> Chemical compound

Lead(II) iodide is a chemical compound with the formula PbI
2
. At room temperature, it is a bright yellow odorless crystalline solid, that becomes orange and red when heated. It was formerly called plumbous iodide.

Classical qualitative inorganic analysis is a method of analytical chemistry which seeks to find the elemental composition of inorganic compounds. It is mainly focused on detecting ions in an aqueous solution, therefore materials in other forms may need to be brought to this state before using standard methods. The solution is then treated with various reagents to test for reactions characteristic of certain ions, which may cause color change, precipitation and other visible changes.

<span class="mw-page-title-main">Thermochromism</span> Property of substances to change colour due to a change in temperature

Thermochromism is the property of substances to change color due to a change in temperature. A mood ring is an excellent example of this phenomenon, but thermochromism also has more practical uses, such as baby bottles which change to a different color when cool enough to drink, or kettles which change color when water is at or near boiling point. Thermochromism is one of several types of chromism.

<span class="mw-page-title-main">Tin(II) chloride</span> Chemical compound

Tin(II) chloride, also known as stannous chloride, is a white crystalline solid with the formula SnCl2. It forms a stable dihydrate, but aqueous solutions tend to undergo hydrolysis, particularly if hot. SnCl2 is widely used as a reducing agent (in acid solution), and in electrolytic baths for tin-plating. Tin(II) chloride should not be confused with the other chloride of tin; tin(IV) chloride or stannic chloride (SnCl4).

<span class="mw-page-title-main">Copper(I) iodide</span> Chemical compound

Copper(I) iodide is the inorganic compound with the formula CuI. It is also known as cuprous iodide. It is useful in a variety of applications ranging from organic synthesis to cloud seeding.

<span class="mw-page-title-main">Barium iodide</span> Chemical compound

Barium iodide is an inorganic compound with the formula BaI2. The compound exists as an anhydrous and a hydrate (BaI2(H2O)2), both of which are white solids. When heated, hydrated barium iodide converts to the anhydrous salt. The hydrated form is freely soluble in water, ethanol, and acetone.

<span class="mw-page-title-main">Mercury(II) thiocyanate</span> Chemical compound

Mercury(II) thiocyanate (Hg(SCN)2) is an inorganic chemical compound, the coordination complex of Hg2+ and the thiocyanate anion. It is a white powder. It will produce a large, winding "snake" when ignited, an effect known as the Pharaoh's serpent.

<span class="mw-page-title-main">Thallium(I) iodide</span> Chemical compound

Thallium(I) iodide is a chemical compound with the formula TlI. It is unusual in being one of the few water-insoluble metal iodides, along with AgI, CuI, SnI2, SnI4, PbI2 and HgI2.

<span class="mw-page-title-main">Beryllium chloride</span> Chemical compound

Beryllium chloride is an inorganic compound with the formula BeCl2. It is a colourless, hygroscopic solid that dissolves well in many polar solvents. Its properties are similar to those of aluminium chloride, due to beryllium's diagonal relationship with aluminium.

<span class="mw-page-title-main">Cobalt(II) hydroxide</span> Chemical compound

Cobalt(II) hydroxide or cobaltous hydroxide is the inorganic compound with the formula Co(OH)
2
, consisting of divalent cobalt cations Co2+
and hydroxide anions OH
. The pure compound, often called the "beta form" is a pink solid insoluble in water.

<span class="mw-page-title-main">Californium compounds</span>

Few compounds of californium have been made and studied. The only californium ion that is stable in aqueous solutions is the californium(III) cation. The other two oxidation states are IV (strong oxidizing agents) and II (strong reducing agents). The element forms a water-soluble chloride, nitrate, perchlorate, and sulfate and is precipitated as a fluoride, oxalate or hydroxide. If problems of availability of the element could be overcome, then CfBr2 and CfI2 would likely be stable.

Iron(II) iodide is an inorganic compound with the chemical formula FeI2. It is used as a catalyst in organic reactions.

<span class="mw-page-title-main">Nickel(II) thiocyanate</span> Chemical compound

Nickel(II) thiocyanate is a coordination polymer with formula Ni(SCN)2. It is a green-brown solid and its crystal structure was determined first in 1982.

<span class="mw-page-title-main">Europium(II) iodide</span> Chemical compound

Europium(II) iodide is the iodide salt of divalent europium cation.

<span class="mw-page-title-main">Praseodymium diiodide</span> Chemical compound

Praseodymium diiodide is a chemical compound with the empirical formula of PrI2, consisting of praseodymium and iodine. It is an electride, with the ionic formula of Pr3+(I)2e, and therefore not a true praseodymium(II) compound.

<span class="mw-page-title-main">Thulium(III) iodide</span> Chemical compound

Thulium(III) iodide is an iodide of thulium, with the chemical formula of TmI3. Thulium(III) iodide is used as a component of metal halide lamps.

Lutetium compounds are compounds formed by the lanthanide metal lutetium (Lu). In these compounds, lutetium generally exhibits the +3 oxidation state, such as LuCl3, Lu2O3 and Lu2(SO4)3. Aqueous solutions of most lutetium salts are colorless and form white crystalline solids upon drying, with the common exception of the iodide. The soluble salts, such as nitrate, sulfate and acetate form hydrates upon crystallization. The oxide, hydroxide, fluoride, carbonate, phosphate and oxalate are insoluble in water.

References

  1. John Rumble (June 18, 2018). CRC Handbook of Chemistry and Physics (99 ed.). CRC Press. pp. 5–189. ISBN   978-1138561632.
  2. Thermochromism: Mercury(II) Iodide. Jchemed.chem.wisc.edu. Retrieved on 2011-06-02.
  3. SCHWARZENBACH, D. (1 January 1969). "The crystal structure and one-dimensional disorder of the orange modification of HgI2". Zeitschrift für Kristallographie - Crystalline Materials. 128 (1–6): 97–114. doi:10.1524/zkri.1969.128.16.97. S2CID   96682743.
  4. Hostettler, Marc; Schwarzenbach, Dieter (February 2005). "Phase diagrams and structures of HgX2 (X = I, Br, Cl, F)". Comptes Rendus Chimie. 8 (2): 147–156. doi:10.1016/j.crci.2004.06.006.
  5. Ayres, F.; Assali, L.V. C.; Machado, W. V. M.; Justo, J. F. (2006). "Role of intrinsic defects in the electronic and optical properties of alpha-HgI2". Appl. Phys. Lett. 88: 011918. doi:10.1063/1.2159573.
  6. Simage, Oy U.S. patent 6,509,203 Semiconductor imaging device and method for producing same, Issue date: Jan 21, 2003