PCI eXtensions for Instrumentation

Last updated
PXI-System with embedded Controller PXI Chassis.jpg
PXI-System with embedded Controller
PXI backplane ADLINK XBP-3006L PXI Backplane.jpg
PXI backplane ADLINK XBP-3006L

PCI eXtensions for Instrumentation (PXI) is one of several modular electronic instrumentation platforms in current use. These platforms are used as a basis for building electronic test equipment, automation systems, and modular laboratory instruments.

Contents

PXI is based on industry-standard computer buses and permits flexibility in building equipment. Often, modules are fitted with custom software to manage the system.

Overview

PXI is designed for measurement and automation applications that require high-performance and a rugged industrial form-factor.

With PXI, one can select modules from a number of vendors and integrate them into a single PXI system, over 1150 module types available in 2006. A typical 3U PXI module measures approximately 100 x 160 mm (4x6") in size, and a typical 8-slot PXI chassis is 4U high and half rack width, full width chassis contain up to 18 PXI slots.

PXI uses PCI-based technology and an industry standard governed by the PXI Systems Alliance (PXISA) to ensure standards compliance and system interoperability.

There are PXI modules available for almost every conceivable test, measurement, and automation application, from the ubiquitous switching modules and DMMs, to high-performance microwave vector signal generation and analysis.

There are also companies specializing in writing software for PXI modules, as well as companies providing PXI hardware-software integration services.

PXI is based on CompactPCI, and it offers all of the benefits of the PCI architecture including performance, industry adoption, COTS technology. PXI adds a rugged CompactPCI mechanical form-factor, an industry consortium that defines hardware, electrical, software, power and cooling requirements.

Then PXI adds integrated timing and synchronization which is used to route synchronization clocks, and triggers internally. PXI is a future-proof technology, and is designed to be simply and quickly reprogrammed as test, measurement, and automation requirements change.

Most PXI instrument modules are register-based products, that use software drivers hosted on a PC to configure them as useful instruments, taking advantage of the increasing power of PCs to improve hardware access and simplify embedded software in the modules. The open architecture allows hardware to be reconfigured to provide new facilities and features that are difficult to emulate in comparable bench instruments.

PXI system data bandwidth performance easily exceeds the performance of the older VXI test standard. There is debate within the technical community as to whether newer standards such as LXI will surpass PXI in both performance and overall cost of ownership.

PXI modules providing the instrument functions are plugged into a PXI chassis which may include its own controller running an industry standard operating system such as Windows 7, Windows XP, Windows 2000, or Linux, [1] or a PCI-to-PXI bridge that provides a high-speed link to a desktop PC controller. Likewise, multiple PXI racks can be linked together with PCI bridge cards, to build very large systems such as multiple source microwave signal generator test stands for complex ATE applications.

CompactPCI and PXI products are interchangeable, i.e. they can be used in either CompactPCI or PXI chassis, but installation in the alternative chassis type may eliminate certain clocking and triggering features. So, for example, you could mount a CompactPCI Network interface controller in a PXI rack to provide additional network interface functions to a test stand. Conversely, a PXI module installed in a CompactPCI chassis would not utilize the additional clocking and triggering features of the PXI module.

PXI Systems Alliance

PCI eXtensions for Instrumentation (PXI) is a modular instrumentation platform originally introduced in 1997 by National Instruments. PXI is promoted by the 69-member PXI Systems Alliance (PXISA), whose sponsor members are (in alphabetical order) ADLINK, Cobham Wireless, Keysight Technologies, Marvin Test Solutions, National Instruments, Pickering Interfaces and Teradyne. [2]

Executive Members of the alliance include Alfamation, Beijing Pansino Solutions Technology Co., CHROMA ATE Inc., GOEPEL electronic, MAC Panel, and Virginia Panel Corp. Another 56 associate member organizations that do not have voting rights are supporting PXI and use the PXI logo on their products and marketing material. [2]

PXI providers in 2006

National Instruments and Agilent Technologies (now Keysight Technologies) entered the PXI test market in 2006.

Derived standards

Related Research Articles

<span class="mw-page-title-main">Expansion card</span> Circuit board for connecting to a computer system to add functionality

In computing, an expansion card is a printed circuit board that can be inserted into an electrical connector, or expansion slot on a computer's motherboard to add functionality to a computer system. Sometimes the design of the computer's case and motherboard involves placing most of these slots onto a separate, removable card. Typically such cards are referred to as a riser card in part because they project upward from the board and allow expansion cards to be placed above and parallel to the motherboard.

<span class="mw-page-title-main">Data acquisition</span> Process of sampling signals from sensors and converting into digital data

Data acquisition is the process of sampling signals that measure real-world physical conditions and converting the resulting samples into digital numeric values that can be manipulated by a computer. Data acquisition systems, abbreviated by the acronyms DAS,DAQ, or DAU, typically convert analog waveforms into digital values for processing. The components of data acquisition systems include:

<span class="mw-page-title-main">IEEE-488</span> General Purpose Interface Bus (GPIB) specification

IEEE 488, also known as HP-IB and generically as GPIB, is a short-range digital communications 8-bit parallel multi-master interface bus specification developed by Hewlett-Packard. It subsequently became the subject of several standards.

<span class="mw-page-title-main">Agilent Technologies</span> American technology company

Agilent Technologies, Inc. is a global company headquartered in Santa Clara, California, that provides instruments, software, services, and consumables for laboratories. Agilent was established in 1999 as a spin-off from Hewlett-Packard. The resulting IPO of Agilent stock was the largest in the history of Silicon Valley at the time. From 1999 to 2014, the company produced optics, semiconductors, EDA software and test and measurement equipment for electronics; that division was spun off to form Keysight. Since then, the company has continued to expand into pharmaceutical, diagnostics & clinical, and academia & government (research) markets.

<span class="mw-page-title-main">Single-board computer</span> Computer whose components are on a single printed circuit board

A single-board computer (SBC) is a complete computer built on a single circuit board, with microprocessor(s), memory, input/output (I/O) and other features required of a functional computer. Single-board computers are commonly made as demonstration or development systems, for educational systems, or for use as embedded computer controllers. Many types of home computers or portable computers integrate all their functions onto a single printed circuit board.

<span class="mw-page-title-main">Electronic test equipment</span> Testing appliance for electronics systems

Electronic test equipment is used to create signals and capture responses from electronic devices under test (DUTs). In this way, the proper operation of the DUT can be proven or faults in the device can be traced. Use of electronic test equipment is essential to any serious work on electronics systems.

LAN eXtensions for Instrumentation (LXI) is a standard which defines the communication protocols for instrumentation and data acquisition systems using Ethernet.

<span class="mw-page-title-main">National Instruments</span> American multinational company

National Instruments Corporation, doing business as NI, is an American multinational company with international operation. Headquartered in Austin, Texas, it is a producer of automated test equipment and virtual instrumentation software. Common applications include data acquisition, instrument control and machine vision. Since October 2023, NI operates as Emerson Electric's test and measurement business unit after getting acquired.

<span class="mw-page-title-main">VME eXtensions for Instrumentation</span>

VME eXtensions for instrumentation bus refers to standards for automated test based upon VMEbus. VXI defines additional bus lines for timing and triggering as well as mechanical requirements and standard protocols for configuration, message-based communication, multi-chassis extension, and other features. In 2004, the 2eVME extension was added to the VXI bus specification, giving it a maximum data rate of 160 MB/s.

<span class="mw-page-title-main">Automatic test equipment</span> Apparatus used in hardware testing that carries out a series of tests automatically

Automatic test equipment or automated test equipment (ATE) is any apparatus that performs tests on a device, known as the device under test (DUT), equipment under test (EUT) or unit under test (UUT), using automation to quickly perform measurements and evaluate the test results. An ATE can be a simple computer-controlled digital multimeter, or a complicated system containing dozens of complex test instruments capable of automatically testing and diagnosing faults in sophisticated electronic packaged parts or on wafer testing, including system on chips and integrated circuits.

Keysight VEE is a graphical dataflow programming software development environment from Keysight Technologies for automated test, measurement, data analysis and reporting. VEE originally stood for Visual Engineering Environment and developed by HP designated as HP VEE; it has since been officially renamed to Keysight VEE. Keysight VEE has been widely used in various industries, serving the entire stage of a product lifecycle, from design, validation to manufacturing. It is optimized in instrument control and automation with test and measurement devices such as data acquisition instruments like digital voltmeters and oscilloscopes, and source devices like signal generators and programmable power supplies.

Rocky Mountain BASIC is a dialect of the BASIC programming language created by Hewlett-Packard. It was especially popular for control of automatic test equipment using GPIB. It has several features which are or were unusual in BASIC dialects, such as event-driven operation, extensive external I/O support, complex number support, and matrix manipulation functions. Today, RMB is mainly used in environments where an investment in RMB software, hardware, or expertise already exists.

Instrument control consists of connecting a desktop instrument to a computer and taking measurements.

<span class="mw-page-title-main">CPU card</span>

A CPU card is a printed circuit board (PCB) that contains the central processing unit (CPU) of a computer. CPU cards are specified by CPU clock frequency and bus type as well as other features and applications built into the card.

PathWave Design is a division of Keysight Technologies that was formerly called EEsof. It is a provider of electronic design automation (EDA) software that helps engineers design products such as cellular phones, wireless networks, radar, satellite communications systems, and high-speed digital wireline infrastructure. Applications include electronic system level (ESL), high-speed digital, RF-Mixed signal, device modeling, RF and Microwave design for commercial wireless, aerospace, and defense markets.

A digital pattern generator is a piece of electronic test equipment or software used to generate digital electronic stimuli. Digital electronics stimuli are a specific kind of electrical waveform varying between two conventional voltages that correspond to two logic states. The main purpose of a digital pattern generator is to stimulate the inputs of a digital electronic device. For that reason, the voltage levels generated by a digital pattern generator are often compatible with digital electronics I/O standards – TTL, LVTTL, LVCMOS and LVDS, for instance.

M-Modules are a mezzanine standard mainly used in industrial computers. Being mezzanines, they are always plugged on a carrier printed circuit board (PCB) that supports this format. The modules communicate with their carrier over a dedicated bus, and can have all kinds of special functions.

AdvancedTCA Extensions for Instrumentation and Test (AXIe) is a modular instrumentation standard created by Aeroflex, Keysight Technologies, and Test Evolution Corporation. (In October 2008, Aeroflex had purchased a 40% shareholding in Test Evolution.)

An instrument driver, in the context of test and measurement (T&M) application development, is a set of software routines that simplifies remote instrument control. Instrument drivers are specified by the IVI Foundation and define an I/O abstraction layer using the virtual instrument software architecture (VISA). The VISA hardware abstraction layer provides an interface-independent communication channel to T&M instruments. Furthermore, the instrument drivers encapsulate the Standard Commands for Programmable Instruments (SCPI) commands, which are an ASCII-based set of commands for reading and writing instrument settings and measurement data. This standard allows an abstract way of using various programming languages to program remote-control applications instead of using SCPI commands. An instrument driver usually has a well-defined API.

<span class="mw-page-title-main">CompactDAQ</span>

CompactDAQ is a data acquisition platform built by National Instruments that includes a broad set of compatible hardware and software. CompactDAQ integrates hardware for data I/O with LabVIEW software to enable engineers to collect, process and analyse sensor data. CompactDAQ systems are less expensive than equivalent systems within the NI PXI Platform.

References

  1. PXI Systems Alliance (March 20, 2020). "PXI-2 Software Specification Rev. 2.6" (PDF). PXI Systems Alliance Specifications. PXI Systems Alliance. Retrieved January 23, 2023.
  2. 1 2 "Membership Roster". PXI Systems Alliance. Retrieved 21 April 2015.
  3. http://www.eetasia.com
  4. http://www.frost.com
  5. Fountain, T.; McCarthy, A.; Peng, F. (2005). "PCI Express: an Overview of PCI Express, Cabled PCI Express and PXI Express" (PDF). 10th ICALEPCS Int. Conf. on Accelerator & Large Expt. Physics Control Systems.
  6. PXI Systems Alliance (2005). PXI Express Hardware Specification (PDF) (Standard). PXI-5.
  7. "Supercharging Test and Measurement Systems with Intel Xeon CPU and PCI Express Gen 3 Technology - National Instruments". www.ni.com. Retrieved 2016-05-17.
  8. "PC Control of PXI". National Instruments . Retrieved 18 June 2014.
  9. "Introduction to PXImc - Technology for High Performance Test, Measurement & Control Applications - National Instruments". www.ni.com. Retrieved 2016-05-17.
  10. Rowe, Martin (1 December 2009). "PXI expands to multiple processors". Test & Measurement World. Archived from the original on 22 February 2012.