TOSLINK

Last updated

TOSLINK / EIAJ optical


TOS LINK clear cable.jpg
Clear TOSLINK cable with a round connector for S/PDIF connectivity.
Type Optical digital audio connector
Production history
Designer Toshiba
Designed 1983
Manufacturer Toshiba
Produced Since 1983
General specifications
Hot pluggable Yes
External Yes
Audio signal S/PDIF bitstream. Originally limited to 48 kHz at 20 bits PCM. Extended by manufacturers to support additional formats.[ citation needed ]
Cable Optical fiber, ~10 m (33 ft) maximum [1]
Pins 1
Connector JIS F05 (JIS C5974-1993 F05)
Data
Width Serial
Bitrate
  • 3.1 Mbit/s (S/PDIF, 48 kHz PCM) [1]
  • 15 Mbit/s (common TORX147 receiver)
  • 125 Mbit/s (automotive, 2003) [2]
Max. devices 1
Protocol Serial

TOSLINK (from Toshiba Link [3] ) is a standardized optical fiber connector system. [4] Also known generically as optical audio, its most common use is in consumer audio equipment (via a "digital optical" socket), where it carries a digital audio stream from components such as CD and DVD players, Digital Audio Tape recorders, computers, and modern video game consoles, to an AV receiver that can decode two channels of uncompressed pulse-code modulated (PCM) audio or compressed 5.1/7.1 surround sound such as Dolby Digital or DTS Surround System. Unlike HDMI, TOSLINK does not have the bandwidth to carry the uncompressed versions of Dolby TrueHD, DTS-HD Master Audio, or more than two channels of PCM audio.

Contents

Although TOSLINK supports several different media formats and physical standards, digital audio connections using the rectangular EIAJ/JEITA RC-5720 (also CP-1201 and JIS C5974-1993 F05) connector are by far the most common. [5] The optical signal is a red light with a peak wavelength of 650 nm. [3] Depending on the type of modulated signal being carried, other optical wavelengths may be present. [5]

History

TOSLINK connector (JIS F05) TOSLINK.jpg
TOSLINK connector (JIS F05)

Toshiba originally created TOSLINK to connect their CD players to the receivers they manufactured, for PCM audio streams. The software layer is based on the "Sony/Philips Digital Interface" [6] [7] (S/PDIF), while the hardware layer utilizes a fiber optic transmission system, rather than the electrical (copper) hardware layer of S/PDIF. TOSLINK was soon adopted by manufacturers of most CD players. It can often be found on video source (DVD and Blu-ray players, cable boxes and game consoles) to connect the digital audio stream to Dolby Digital/DTS decoders.

The name is a registered trademark of Toshiba, created from TOShiba-LINK. Variations of the name, such as TOSlink, TosLink, and Tos-link, are also seen, while the official generic name for the standard is EIAJ optical.[ citation needed ]

ADAT Lightpipe or simply ADAT Optical uses an optical transmission system similar to TOSLINK, and is used in the professional music/audio industry. While the ADAT Lightpipe format uses the same JIS F05 connectors as TOSLINK, the ADAT Lightpipe data format is not compatible with S/PDIF.[ citation needed ]

Properties and issues

Due to their high attenuation of light, the effective range of plastic optical cables is limited to 5–10 m. [1] They can temporarily fail or be permanently damaged if tightly bent. Although less commonly available and more expensive than plastic optical fiber (POF) cables, glass or silica optical fibers have lower losses and can extend the range of the TOSLINK system.

Optical cables are not susceptible to electrical problems such as ground loops and RF interference. [8]

Design

A TOSLINK fiber optic audio cable being illuminated by a laser on the left end Fiber optic illuminated.jpg
A TOSLINK fiber optic audio cable being illuminated by a laser on the left end

Several types of fiber can be used for TOSLINK: inexpensive 1 mm plastic optical fiber, higher-quality multistrand plastic optical fibers, or quartz glass optical fibers, depending on the desired bandwidth and application. TOSLINK cables are usually limited to 5 meters in length, with a technical maximum [1] of 10 meters, for reliable transmission without the use of a signal booster or a repeater. However, it is very common for interfaces on newer consumer electronics (satellite receivers and PCs with optical outputs) to easily run over 30 meters on even low-cost (0.82 USD/m 2009) TOSLINK cables. TOSLINK transmitters operate at a nominal optical wavelength of 650 nm.

A mini-TOSLINK adapter Minitoslink.png
A mini-TOSLINK adapter

Mini-TOSLINK is a standardized optical fiber connector smaller than the standard square TOSLINK connector commonly used in larger consumer audio equipment. The plug is almost the same size and shape as the ubiquitous 3.5 mm stereo minijack. Adapters are available to connect a full-size TOSLINK plug to a mini-TOSLINK socket. Combined 3.5 mm jack and mini-TOSLINK sockets exist which can accept a 3.5 mm jack or a mini-TOSLINK plug; mini-TOSLINK plugs are made 0.5 mm longer than electrical jack plugs so that the latter are too short to touch and damage the LED of combined connectors. Many discontinued laptop computer and portable digital audio equipment models, such as the Google Chromecast Audio device, [9] [10] Apple AirPort Express, and iPod Hi-Fi use these connectors that allow for the insertion of 3.5 mm analog (electrical) headphone output, microphone input, or mini-TOSLINK digital (optical) output.

Related Research Articles

<span class="mw-page-title-main">SCART</span> 21-pin connector for audio-visual equipment

SCART is a French-originated standard and associated 21-pin connector for connecting audio-visual (AV) equipment. The name SCART comes from Syndicat des Constructeurs d'Appareils Radiorécepteurs et Téléviseurs, "Radio and Television Receiver Manufacturers' Association", the French organisation that created the connector in the mid-1970s. The related European standard EN 50049 has then been refined and published in 1978 by CENELEC, calling it péritelevision, but it is commonly called by the abbreviation péritel in French.

Dolby Digital, originally synonymous with Dolby AC-3, is the name for what has now become a family of audio compression technologies developed by Dolby Laboratories. Formerly named Dolby Stereo Digital until 1995, the audio compression is lossy, based on the modified discrete cosine transform (MDCT) algorithm. The first use of Dolby Digital was to provide digital sound in cinemas from 35 mm film prints; today, it is also used for applications such as TV broadcast, radio broadcast via satellite, digital video streaming, DVDs, Blu-ray discs and game consoles.

<span class="mw-page-title-main">S/PDIF</span> Standardized digital audio interface

S/PDIF is a type of digital audio interface used in consumer audio equipment to output audio over relatively short distances. The signal is transmitted over either a coaxial cable or a fiber optic cable with TOSLINK connectors. S/PDIF interconnects components in home theaters and other digital high-fidelity systems.

<span class="mw-page-title-main">Electrical connector</span> Device used to join electrical conductors

Components of an electrical circuit are electrically connected if an electric current can run between them through an electrical conductor. An electrical connector is an electromechanical device used to create an electrical connection between parts of an electrical circuit, or between different electrical circuits, thereby joining them into a larger circuit. Most electrical connectors have a gender – i.e. the male component, called a plug, connects to the female component, or socket. The connection may be removable, require a tool for assembly and removal, or serve as a permanent electrical joint between two points. An adapter can be used to join dissimilar connectors.

<span class="mw-page-title-main">RCA connector</span> Electrical connector used for analog audio and video

The RCA connector is a type of electrical connector commonly used to carry audio and video signals. The name RCA derives from the company Radio Corporation of America, which introduced the design in the 1930s. The connectors male plug and female jack are called RCA plug and RCA jack.

A DVD player is a device that plays DVDs produced under both the DVD-Video and DVD-Audio technical standards, two different and incompatible standards. Some DVD players will also play audio CDs. DVD players are connected to a television to watch the DVD content, which could be a movie, a recorded TV show, or other content.

<span class="mw-page-title-main">DVD-Audio</span> DVD format for storing high-fidelity audio

DVD-Audio is a digital format for delivering high-fidelity audio content on a DVD. DVD-Audio uses most of the storage on the disc for high-quality audio and is not intended to be a video delivery format.

<span class="mw-page-title-main">Phone connector (audio)</span> Family of connectors typically used for analog signals

A phone connector, also known as phone jack, audio jack, headphone jack or jack plug, is a family of electrical connectors typically used for analog audio signals. A plug, the male connector, is inserted into the jack, the female connector.

<span class="mw-page-title-main">HDMI</span> Proprietary interface for transmitting digital audio and video data

High-Definition Multimedia Interface (HDMI) is a proprietary audio/video interface for transmitting uncompressed video data and compressed or uncompressed digital audio data from an HDMI-compliant source device, such as a display controller, to a compatible computer monitor, video projector, digital television, or digital audio device. HDMI is a digital replacement for analog video standards.

I²S, is an electrical serial bus interface standard used for connecting digital audio devices together. It is used to communicate PCM audio data between integrated circuits in an electronic device. The I²S bus separates clock and serial data signals, resulting in simpler receivers than those required for asynchronous communications systems that need to recover the clock from the data stream. Alternatively I²S is spelled I2S or IIS. Despite the similar name, I²S is unrelated to the bidirectional I²C (IIC) bus.

<span class="mw-page-title-main">Optical fiber</span> Light-conducting fiber

An optical fiber, or optical fibre in Commonwealth English, is a flexible, transparent fiber made by drawing glass (silica) or plastic to a diameter slightly thicker than that of a human hair. Optical fibers are used most often as a means to transmit light between the two ends of the fiber and find wide usage in fiber-optic communications, where they permit transmission over longer distances and at higher bandwidths than electrical cables. Fibers are used instead of metal wires because signals travel along them with less loss; in addition, fibers are immune to electromagnetic interference, a problem from which metal wires suffer. Fibers are also used for illumination and imaging, and are often wrapped in bundles so they may be used to carry light into, or images out of confined spaces, as in the case of a fiberscope. Specially designed fibers are also used for a variety of other applications, some of them being fiber optic sensors and fiber lasers.

<span class="mw-page-title-main">Sony BDP-S1</span>

The Sony BDP-S1 is a first generation Blu-ray Disc (BD) player and is the first such player released in North America. It was originally scheduled for release in the United States on August 18, 2006 with a MSRP of $999.95. Sony had postponed the release date of this player several times and it was released on December 4, 2006.

<span class="mw-page-title-main">AV receiver</span> Consumer electronics component

An audio/video receiver (AVR) is a consumer electronics component used in a home theater. Its purpose is to receive audio and video signals from a number of sources, and to process them and provide power amplifiers to drive loudspeakers and route the video to displays such as a television, monitor or video projector. Inputs may come from a satellite receiver, radio, DVD players, Blu-ray Disc players, VCRs or video game consoles, among others. The AVR source selection and settings such as volume, are typically set by a remote controller.

<span class="mw-page-title-main">MADI</span> Multichannel digital audio interface

Multichannel Audio Digital Interface (MADI) standardized as AES10 by the Audio Engineering Society (AES) defines the data format and electrical characteristics of an interface that carries multiple channels of digital audio. The AES first documented the MADI standard in AES10-1991, and updated it in AES10-2003 and AES10-2008. The MADI standard includes a bit-level description and has features in common with the two-channel AES3 interface.

<span class="mw-page-title-main">Fiber-optic communication</span> Method of transmitting information

Fiber-optic communication is a method of transmitting information from one place to another by sending pulses of infrared light through an optical fiber. The light is a form of carrier wave that is modulated to carry information. Fiber is preferred over electrical cabling when high bandwidth, long distance, or immunity to electromagnetic interference is required. This type of communication can transmit voice, video, and telemetry through local area networks or across long distances.

The ADAT Lightpipe, officially the ADAT Optical Interface, is a standard for the transfer of digital audio between equipment. It was originally developed by Alesis but has since become widely accepted, with many third party hardware manufacturers including Lightpipe interfaces on their equipment. The protocol has become so popular that the term ADAT is now often used to refer to the transfer standard rather than to the Alesis Digital Audio Tape itself.

Founded in 1948, the Electronic Industries Association of Japan (EIAJ) was one of two Japanese electronics trade organizations that were merged into the Japan Electronics and Information Technology Industries Association (JEITA).

<span class="mw-page-title-main">Fiber-optic cable</span> Cable assembly containing one or more optical fibers that are used to carry light

A fiber-optic cable, also known as an optical-fiber cable, is an assembly similar to an electrical cable, but containing one or more optical fibers that are used to carry light. The optical fiber elements are typically individually coated with plastic layers and contained in a protective tube suitable for the environment where the cable is used. Different types of cable are used for different applications, for example, long distance telecommunication, or providing a high-speed data connection between different parts of a building.

An audio signal is a representation of sound, typically using either a changing level of electrical voltage for analog signals, or a series of binary numbers for digital signals. Audio signals have frequencies in the audio frequency range of roughly 20 to 20,000 Hz, which corresponds to the lower and upper limits of human hearing. Audio signals may be synthesized directly, or may originate at a transducer such as a microphone, musical instrument pickup, phonograph cartridge, or tape head. Loudspeakers or headphones convert an electrical audio signal back into sound.

Audio connectors and video connectors are electrical or optical connectors for carrying audio or video signals. Audio interfaces or video interfaces define physical parameters and interpretation of signals. For digital audio and digital video, this can be thought of as defining the physical layer, data link layer, and most or all of the application layer. For analog audio and analog video these functions are all represented in a single signal specification like NTSC or the direct speaker-driving signal of analog audio.

References

  1. 1 2 3 4 "SPDIF". epanorama.net. Retrieved 13 February 2022.
  2. "New Fiber Optic Devices in Toshiba's TOSLINK Line-up Supports Development of High-speed Automotive LAN". Toshiba. 20 February 2003.
  3. 1 2 "Toshiba TOTX1701 TOSLINK Transmitter Module specifications". Archived from the original on 17 July 2011.
  4. 1 2 "Product guide, Fiber-Optic Devices TOSLINK(tm)" (PDF). 100621 digikey.com
  5. "S/PDIF Information". Intel. 21 July 2017. Retrieved 3 April 2018.
  6. "S/PDIF". PCMag Encyclopedia. Retrieved 13 February 2022.
  7. Joseph D. Cornwall (31 December 2004). "Understanding Digital Interconnects". Audioholics.com. Retrieved 12 July 2007.
  8. Pendlebury, Ty (10 December 2015). "Chromecast Audio adds support for multiroom music and high-res files". Cnet . Archived from the original on 21 December 2021.
  9. Greenwald, Will (14 December 2015). "Google Chromecast Audio". PC Magazine . Archived from the original on 4 October 2015.