Plasmolysis

Last updated
Plasmolysis
Blausen 0683 OsmoticFlow Hypertonic.png
A red blood cell in a hypertonic solution, causing water to move out of the cell.
Specialty Cell biology
Causes Osmosis
Rhoeo Discolor epidermis.jpg
Rhoeo Discolor - Plasmolysis.jpg
Before plasmolysis (top) and after (bottom)

Plasmolysis is the process in which cells lose water in a hypertonic solution. The reverse process, deplasmolysis or cytolysis, can occur if the cell is in a hypotonic solution resulting in a lower external osmotic pressure and a net flow of water into the cell. Through observation of plasmolysis and deplasmolysis, it is possible to determine the tonicity of the cell's environment as well as the rate solute molecules cross the cellular membrane.

Contents

Etymology

The term plasmolysis is derived from the Latin word ‘plasma’ meaning ‘matrix’ and the Greek word ‘lysis’, meaning ‘loosening’.

Turgidity

A plant cell in hypotonic solution will absorb water by endosmosis, so that the increased volume of water in the cell will increase pressure, making the protoplasm push against the cell wall, a condition known as turgor. Turgor makes plant cells push against each other in the same way and is the main line method of support in non-woody plant tissue. Plant cell walls resist further water entry after a certain point, known as full turgor, which stops plant cells from bursting as animal cells do in the same conditions. This is also the reason that plants stand upright. Without the stiffness of the plant cells the plant would fall under its own weight. Turgor pressure allows plants to stay firm and erect, and plants without turgor pressure (known as flaccid) wilt. A cell will begin to decline in turgor pressure only when there is no air spaces surrounding it and eventually leads to a greater osmotic pressure than that of the cell. [1] Vacuoles play a role in turgor pressure when water leaves the cell due to hyperosmotic solutions containing solutes such as mannitol, sorbitol, and sucrose. [2]

Plant cell undergoing Plasmolysis in a Hypertonic solution (x400 magnification) Plasmolysed Plant Cell.jpg
Plant cell undergoing Plasmolysis in a Hypertonic solution (x400 magnification)

Plasmolysis

Plant cell under different environments Turgor pressure on plant cells diagram.svg
Plant cell under different environments

If a plant cell is placed in a hypertonic solution, the plant cell loses water and hence turgor pressure by plasmolysis: pressure decreases to the point where the protoplasm of the cell peels away from the cell wall, leaving gaps between the cell wall and the membrane and making the plant cell shrink and crumple. A continued decrease in pressure eventually leads to cytorrhysis – the complete collapse of the cell wall. Plants with cells in this condition wilt. After plasmolysis the gap between the cell wall and the cell membrane in a plant cell is filled with hypertonic solution. This is because as the solution surrounding the cell is hypertonic, exosmosis takes place and the space between the cell wall and cytoplasm is filled with solutes, as most of the water drains away and hence the concentration inside the cell becomes more hypertonic. There are some mechanisms in plants to prevent excess water loss in the same way as excess water gain. Plasmolysis can be reversed if the cell is placed in a hypotonic solution. Stomata help keep water in the plant so it does not dry out. Wax also keeps water in the plant. The equivalent process in animal cells is called crenation.

The liquid content of the cell leaks out due to exosmosis. The cell collapses, and the cell membrane pulls away from the cell wall (in plants). Most animal cells consist of only a phospholipid bilayer (plasma membrane) and not a cell wall, therefore shrinking up under such conditions.

Plasmolysis only occurs in extreme conditions and rarely occurs in nature. It is induced in the laboratory by immersing cells in strong saline or sugar (sucrose) solutions to cause exosmosis, often using Elodea plants or onion epidermal cells, which have colored cell sap so that the process is clearly visible. Methylene blue can be used to stain plant cells.

Plasmolysis is mainly known as shrinking of cell membrane in hypertonic solution and great pressure.

Plasmolysis can be of two types, either concave plasmolysis or convex plasmolysis. Convex plasmolysis is always irreversible while concave plasmolysis is usually reversible. [2] During concave plasmolysis, the plasma membrane and the enclosed protoplast partially shrinks from the cell wall due to half-spherical, inwarding curving pockets forming between the plasma membrane and the cell wall. During convex plasmolysis, the plasma membrane and the enclosed protoplast shrinks completely from the cell wall, with the plasma membrane's ends in a symmetrically, spherically curved pattern. [2]

Related Research Articles

<span class="mw-page-title-main">Osmotic pressure</span> Measure of the tendency of a solution to take in pure solvent by osmosis

Osmotic pressure is the minimum pressure which needs to be applied to a solution to prevent the inward flow of its pure solvent across a semipermeable membrane. It is also defined as the measure of the tendency of a solution to take in its pure solvent by osmosis. Potential osmotic pressure is the maximum osmotic pressure that could develop in a solution if it were separated from its pure solvent by a semipermeable membrane.

Lysis is the breaking down of the membrane of a cell, often by viral, enzymic, or osmotic mechanisms that compromise its integrity. A fluid containing the contents of lysed cells is called a lysate. In molecular biology, biochemistry, and cell biology laboratories, cell cultures may be subjected to lysis in the process of purifying their components, as in protein purification, DNA extraction, RNA extraction, or in purifying organelles.

<span class="mw-page-title-main">Passive transport</span> Transport that does not require energy

Passive transport is a type of membrane transport that does not require energy to move substances across cell membranes. Instead of using cellular energy, like active transport, passive transport relies on the second law of thermodynamics to drive the movement of substances across cell membranes. Fundamentally, substances follow Fick's first law, and move from an area of high concentration to one of low concentration because this movement increases the entropy of the overall system. The rate of passive transport depends on the permeability of the cell membrane, which, in turn, depends on the organization and characteristics of the membrane lipids and proteins. The four main kinds of passive transport are simple diffusion, facilitated diffusion, filtration, and/or osmosis.

<span class="mw-page-title-main">Cytolysis</span> Medical condition

Cytolysis, or osmotic lysis, occurs when a cell bursts due to an osmotic imbalance that has caused excess water to diffuse into the cell. Water can enter the cell by diffusion through the cell membrane or through selective membrane channels called aquaporins, which greatly facilitate the flow of water. It occurs in a hypotonic environment, where water moves into the cell by osmosis and causes its volume to increase to the point where the volume exceeds the membrane's capacity and the cell bursts. The presence of a cell wall prevents the membrane from bursting, so cytolysis only occurs in animal and protozoa cells which do not have cell walls. The reverse process is plasmolysis.

Water potential is the potential energy of water per unit volume relative to pure water in reference conditions. Water potential quantifies the tendency of water to move from one area to another due to osmosis, gravity, mechanical pressure and matrix effects such as capillary action. The concept of water potential has proved useful in understanding and computing water movement within plants, animals, and soil. Water potential is typically expressed in potential energy per unit volume and very often is represented by the Greek letter ψ.

<span class="mw-page-title-main">Cytorrhysis</span>

Cytorrhysis is the permanent and irreparable damage to the cell wall after the complete collapse of a plant cell due to the loss of internal positive pressure. Positive pressure within a plant cell is required to maintain the upright structure of the cell wall. Desiccation resulting in cellular collapse occurs when the ability of the plant cell to regulate turgor pressure is compromised by environmental stress. Water continues to diffuse out of the cell after the point of zero turgor pressure, where internal cellular pressure is equal to the external atmospheric pressure, has been reached, generating negative pressure within the cell. That negative pressure pulls the center of the cell inward until the cell wall can no longer withstand the strain. The inward pressure causes the majority of the collapse to occur in the central region of the cell, pushing the organelles within the remaining cytoplasm against the cell walls. Unlike in plasmolysis, the plasma membrane maintains its connections with the cell wall both during and after cellular collapse.

<span class="mw-page-title-main">Crenation</span>

Crenation in botany and zoology, describes an object's shape, especially a leaf or shell, as being round-toothed or having a scalloped edge.

Suction pressure is also called Diffusion Pressure Deficit. If some solute is dissolved in solvent, its diffusion pressure decreases. The difference between diffusion pressure of pure solvent and solution is called diffusion pressure deficit (DPD). It is a reduction in the diffusion pressure of solvent in the solution over its pure state due to the presence of solutes in it and forces opposing diffusion.

<span class="mw-page-title-main">Tonicity</span> Measure of water potential across a semi-permeable cell membrane

In chemical biology, tonicity is a measure of the effective osmotic pressure gradient; the water potential of two solutions separated by a partially-permeable cell membrane. Tonicity depends on the relative concentration of selective membrane-impermeable solutes across a cell membrane which determine the direction and extent of osmotic flux. It is commonly used when describing the swelling-versus-shrinking response of cells immersed in an external solution.

<span class="mw-page-title-main">Osmotic concentration</span> Molarity of osmotically active particles

Osmotic concentration, formerly known as osmolarity, is the measure of solute concentration, defined as the number of osmoles (Osm) of solute per litre (L) of solution. The osmolarity of a solution is usually expressed as Osm/L, in the same way that the molarity of a solution is expressed as "M". Whereas molarity measures the number of moles of solute per unit volume of solution, osmolarity measures the number of osmoles of solute particles per unit volume of solution. This value allows the measurement of the osmotic pressure of a solution and the determination of how the solvent will diffuse across a semipermeable membrane (osmosis) separating two solutions of different osmotic concentration.

Plasma osmolality measures the body's electrolyte–water balance. There are several methods for arriving at this quantity through measurement or calculation.

Turgor pressure is the force within the cell that pushes the plasma membrane against the cell wall.

A countercurrent mechanism system is a mechanism that expends energy to create a concentration gradient.

<span class="mw-page-title-main">Osmotic shock</span> Shock caused by a sudden change in the solute concentration around a cell

Osmotic shock or osmotic stress is physiologic dysfunction caused by a sudden change in the solute concentration around a cell, which causes a rapid change in the movement of water across its cell membrane. Under hypertonic conditions - conditions of high concentrations of either salts, substrates or any solute in the supernatant - water is drawn out of the cells through osmosis. This also inhibits the transport of substrates and cofactors into the cell thus “shocking” the cell. Alternatively, under hypotonic conditions - when concentrations of solutes are low - water enters the cell in large amounts, causing it to swell and either burst or undergo apoptosis.

The pressure flow hypothesis, also known as the mass flow hypothesis, is the best-supported theory to explain the movement of sap through the phloem. It was proposed by Ernst Münch, a German plant physiologist in 1930. A high concentration of organic substances, particularly sugar, inside cells of the phloem at a source, such as a leaf, creates a diffusion gradient that draws water into the cells from the adjacent xylem. This creates turgor pressure, also known as hydrostatic pressure, in the phloem. Movement of phloem sap occurs by bulk flow from sugar sources to sugar sinks. The movement in phloem is bidirectional, whereas, in xylem cells, it is unidirectional (upward). Because of this multi-directional flow, coupled with the fact that sap cannot move with ease between adjacent sieve-tubes, it is not unusual for sap in adjacent sieve-tubes to be flowing in opposite directions.

<span class="mw-page-title-main">Osmosis</span> Chemical process

Osmosis is the spontaneous net movement or diffusion of solvent molecules through a selectively-permeable membrane from a region of high water potential to a region of low water potential, in the direction that tends to equalize the solute concentrations on the two sides. It may also be used to describe a physical process in which any solvent moves across a selectively permeable membrane separating two solutions of different concentrations. Osmosis can be made to do work. Osmotic pressure is defined as the external pressure required to be applied so that there is no net movement of solvent across the membrane. Osmotic pressure is a colligative property, meaning that the osmotic pressure depends on the molar concentration of the solute but not on its identity.

Osmoregulation is the active regulation of the osmotic pressure of an organism's body fluids, detected by osmoreceptors, to maintain the homeostasis of the organism's water content; that is, it maintains the fluid balance and the concentration of electrolytes to keep the body fluids from becoming too diluted or concentrated. Osmotic pressure is a measure of the tendency of water to move into one solution from another by osmosis. The higher the osmotic pressure of a solution, the more water tends to move into it. Pressure must be exerted on the hypertonic side of a selectively permeable membrane to prevent diffusion of water by osmosis from the side containing pure water.

Osmotic dehydration is an operation used for the partial removal of water from plant tissues by immersion in a hypertonic (osmotic) solution.

Leaf expansion is a process by which plants make efficient use of the space around them by causing their leaves to enlarge, or wither. This process enables a plant to maximize its own biomass, whether it be due to increased surface area; which enables more sunlight to be absorbed by chloroplasts, driving the rate of photosynthesis upward, or it enables more stomata to be created on the leaf surface, allowing the plant to increase its carbon dioxide intake.

The P-type plasma membrane H+
-ATPase
is found in plants and fungi. For the gastric H+
/K+
ATPase, see Hydrogen potassium ATPase.

References

  1. Munns, Rana (2010). Plants in Action. Australian Society of Plant Scientists.
  2. 1 2 3 Lang, Ingeborg; Sassmann, Stefan; Schmidt, Brigitte; Komis, George (2014). "Plasmolysis: Loss of Turgor and Beyond". Plants. 3 (4): 583–93. doi: 10.3390/plants3040583 . PMC   4844282 . PMID   27135521.