Prostate biopsy

Last updated
Prostate biopsy
Diagram showing a transperineal prostate biopsy CRUK 473.svg
Diagram showing a transperineal prostate biopsy
ICD-9-CM 60.11-60.12

Prostate biopsy is a procedure in which small hollow needle-core samples are removed from a man's prostate gland to be examined for the presence of prostate cancer. It is typically performed when the result from a PSA blood test is high. [1] It may also be considered advisable after a digital rectal exam (DRE) finds possible abnormality. PSA screening is controversial as PSA may become elevated due to non-cancerous conditions such as benign prostatic hyperplasia (BPH), by infection, or by manipulation of the prostate during surgery or catheterization. Additionally many prostate cancers detected by screening develop so slowly that they would not cause problems during a man's lifetime, making the complications due to treatment unnecessary.

Contents

The most frequent side effect of the procedure is blood in the urine (31%). [2] Other side effects may include infection (0.9%) and death (0.2%). [2]

Ultrasound-guided prostate biopsy

The procedure may be performed transrectally, through the urethra or through the perineum. The most common approach is transrectally, and historically this was done with tactile finger guidance. [3] The most common method of prostate biopsy as of 2014 was transrectal ultrasound-guided prostate (TRUS) biopsy. [4]

Extended biopsy schemes take 12 to 14 cores from the prostate gland through a thin needle in a systematic fashion from different regions of the prostate. [5]

A biopsy procedure with a higher rate of cancer detection is template prostate mapping (TPM) or transperineal template-guided mapping biopsy (TTMB), whereby typically 50 to 60 samples are taken of the prostate through the outer skin between the rectum and scrotum, to thoroughly sample and map the entire prostate, through a template with holes every 5mm, usually under a general or spinal anaesthetic. [6] [7]

Antibiotics are usually prescribed to minimize the risk of infection. [4] [8] A healthcare provider may also prescribe an enema to be taken in the morning of the procedure. During the transrectal procedure, an ultrasound probe is inserted into the rectum to assist in guiding the biopsy needles. Following this, a local anesthetic, such as anesthetic, is administered into the tissue surrounding the prostate. Subsequently, a spring-loaded biopsy needle is inserted into the prostate, resulting in a clicking sound. When the local anesthetic is effective, any discomfort experienced is minimal.

MRI-guided targeted biopsy

MRI-US fusion biopsy
Targeted MRI-US fusion prostate biopsy at UCLA.jpg
3d-reconstructed prostate gland indicating suspicious lesions for targeted biopsy.

Since the mid-1980s, TRUS biopsy has been used to diagnose prostate cancer in essentially a blind fashion because prostate cancer cannot be seen on ultrasound due to poor soft tissue resolution. However, multi-parametric magnetic resonance imaging (mpMRI) has since about 2005 been used to better identify and characterize prostate cancer. [9] A study correlating MRI and surgical pathology specimens demonstrated a sensitivity of 59% and specificity of 84% in identifying cancer when T2-weighted, dynamic contrast enhanced, and diffusion-weighted imaging were used together. [10] Many prostate cancers missed by conventional biopsy are detectable by MRI-guided targeted biopsy. [11] In fact, a side-by-side comparison of TRUS versus MRI-guided targeted biopsy that was conducted as a prospective, investigator-blinded study demonstrated that MRI-guided biopsy improved detection of significant prostate cancer by 17.7%, and decreased the diagnosis of insignificant or low-risk disease by 89.4%. [12]

Two methods of MRI-guided, or "targeted" prostate biopsy, are available: (1) direct "in-bore" biopsy within the MRI tube, and (2) fusion biopsy using a device that fuses stored MRI with real-time ultrasound (MRI-US). Visual or cognitive MRI-US fusion have been described. [13]

When MRI is used alone to guide prostate biopsy, it is done by an interventional radiologist. Correlation between biopsy and final pathology is improved between MRI-guided biopsy as compared to TRUS. [14]

In the fusion MRI-US prostate biopsy, a prostate MRI is performed before biopsy and then, at the time of biopsy, the MRI images are fused to the ultrasound images to guide the urologist to the suspicious targets. Fusion MRI-US biopsies can be achieved in an office setting with a variety of devices. [11]

MRI-guided prostate biopsy appears to be superior to standard TRUS-biopsy in prostate cancer detection. Several groups in the U.S., [15] [16] and Europe, [17] [18] have demonstrated that targeted biopsies obtained with fusion imaging are more likely to reveal cancer than blind systematic biopsies. In 2015, AdMeTech Foundation, American College of Radiology and European Society of Eurogenital Radiology developed Prostate Imaging Reporting and Data System (PI-RADS v2) for global standardization of image acquisition and interpretation, which similarly to BI-RADS standardization of breast imaging, is expected to improve patient selection for biopsies and precisely-targeted tissue sampling. [19] [20] PI-RADS v2 created standards for optimal mpMRI image reporting and graded the level of suspicion based on the score of one to five, with the goal to improve early detection (and exclusion) of clinically significant (or aggressive) prostate cancer. [21] The higher suspicion on mpMRI and the higher PI-RADS v2 score, the greater the likelihood of aggressive prostate cancer on targeted biopsy. Considerable experience and training is required by the reader of prostate mpMRI studies.

Up to 2013, indications for targeted biopsy have included mainly patients for whom traditional TRUS biopsies have been negative despite concern for rising PSA, as well as for patients enrolling in a program of active surveillance who may benefit from a confirmatory biopsy and/or the added confidence of more accurate non-invasive monitoring. [15] Increasingly, men undergoing initial biopsy are requesting targeted biopsy, and thus, the use of pre-biopsy MRI is growing rapidly.

Clinical trials of mpMRI and PI-RADS v2, including NIH-funded studies are underway to further clarify the benefits of targeted prostate biopsy. [22]

Side effects

Side effects of a TRUS or TPM biopsy include: [23] [6] [24]

Gleason score

The tissue samples are examined under a microscope to determine whether cancer cells are present, and to evaluate the microscopic features (or Gleason score) of any cancer found. Gleason score, PSA, and digital rectal examination together determine clinical risk, which then dictates treatment options.

Tumor markers

Tissue samples can be stained for the presence of PSA and other tumor markers in order to determine the origin of malignant cells that have metastasized. [25]

Related Research Articles

<span class="mw-page-title-main">Prostate cancer</span> Male reproductive organ cancer

Prostate cancer is the uncontrolled growth of cells in the prostate, a gland in the male reproductive system below the bladder. Early prostate cancer usually causes no symptoms. As the tumor grows, it can damage nearby organs causing erectile dysfunction, blood in the urine or semen, and trouble urinating. Some tumors eventually spread to other areas of the body, particularly the bones and lymph nodes. There, tumors cause severe bone pain, leg weakness or paralysis, and eventually death.

<span class="mw-page-title-main">Benign prostatic hyperplasia</span> Noncancerous increase in size of the prostate gland

Benign prostatic hyperplasia (BPH), also called prostate enlargement, is a noncancerous increase in size of the prostate gland. Symptoms may include frequent urination, trouble starting to urinate, weak stream, inability to urinate, or loss of bladder control. Complications can include urinary tract infections, bladder stones, and chronic kidney problems.

<span class="mw-page-title-main">Prostate-specific antigen</span> Mammalian protein found in humans

Prostate-specific antigen (PSA), also known as gamma-seminoprotein or kallikrein-3 (KLK3), P-30 antigen, is a glycoprotein enzyme encoded in humans by the KLK3 gene. PSA is a member of the kallikrein-related peptidase family and is secreted by the epithelial cells of the prostate gland.

<span class="mw-page-title-main">Sentinel lymph node</span> First lymph node to receive drainage from a primary tumor

The sentinel lymph node is the hypothetical first lymph node or group of nodes draining a cancer. In case of established cancerous dissemination it is postulated that the sentinel lymph nodes are the target organs primarily reached by metastasizing cancer cells from the tumor.

<span class="mw-page-title-main">Transrectal ultrasonography</span>

Transrectal ultrasonography, or TRUS in short, is a method of creating an image of organs in the pelvis, most commonly used to perform an ultrasound-guided needle biopsy evaluation of the prostate gland in men with elevated prostate-specific antigen or prostatic nodules on digital rectal exam. TRUS--guided biopsy may reveal prostate cancer, benign prostatic hypertrophy, or prostatitis. TRUS may also detect other diseases of the lower rectum and can be used to stage primary rectal cancer.

Prostate cancer screening is the screening process used to detect undiagnosed prostate cancer in men without signs or symptoms. When abnormal prostate tissue or cancer is found early, it may be easier to treat and cure, but it is unclear if early detection reduces mortality rates.

<span class="mw-page-title-main">Focused ultrasound</span> Non-invasive therapeutic technique

High-intensity focused ultrasound (HIFU) is a non-invasive therapeutic technique that uses non-ionizing ultrasonic waves to heat or ablate tissue. HIFU can be used to increase the flow of blood or lymph or to destroy tissue, such as tumors, via thermal and mechanical mechanisms. Given the prevalence and relatively low cost of ultrasound generation mechanisms, The premise of HIFU is that it is expect a non-invasive and low-cost therapy that can at minimum outperform operating room care.

Magnetic resonance elastography (MRE) is a form of elastography that specifically leverages MRI to quantify and subsequently map the mechanical properties of soft tissue. First developed and described at Mayo Clinic by Muthupillai et al. in 1995, MRE has emerged as a powerful, non-invasive diagnostic tool, namely as an alternative to biopsy and serum tests for staging liver fibrosis.

<span class="mw-page-title-main">Acute prostatitis</span> Serious bacterial infection of the prostate gland

Acute prostatitis is a serious bacterial infection of the prostate gland. This infection is a medical emergency. It should be distinguished from other forms of prostatitis such as chronic bacterial prostatitis and chronic pelvic pain syndrome (CPPS).

Lower urinary tract symptoms (LUTS) refer to a group of clinical symptoms involving the bladder, urinary sphincter, urethra and, in men, the prostate. The term is more commonly applied to men—over 40% of older men are affected—but lower urinary tract symptoms also affect women. The condition is also termed prostatism in men, but LUTS is preferred.

An MRI robot is a medical robot capable of operating within a magnetic resonance imaging (MRI) scanner for the purpose of performing or assisting in image-guided interventions (IGI).

<span class="mw-page-title-main">PCA3</span> Non-coding RNA in the species Homo sapiens

Prostate cancer antigen 3 is a gene that expresses a non-coding RNA. PCA3 is only expressed in human prostate tissue, and the gene is highly overexpressed in prostate cancer. Because of its restricted expression profile, the PCA3 RNA is useful as a tumor marker.

<span class="mw-page-title-main">Active surveillance of prostate cancer</span>

Active surveillance is a management option for localized prostate cancer that can be offered to appropriate patients who would also be candidates for aggressive local therapies, with the intent to intervene if the disease progresses. Active surveillance should not be confused with watchful waiting, another observational strategy for men that would not be candidates for curative therapy because of a limited life expectancy. Active surveillance offers men with a prostate cancer that is thought to have a low risk of causing harm in the absence of treatment, a chance to delay or avoid aggressive treatment and its associated side effects.While prostate cancer is the most common non cutaneous cancer and second leading cause of cancer-related death in American men, it is conservatively estimated that approximately 100,000 men per year in the United States who would be eligible for conservative treatment through active surveillance, undergo unnecessary treatments. The management of localized prostate cancer is controversial and men with localized disease diagnosed today often undergo treatments with significant side effects that will not improve overall health outcomes. The 2011 NIH State-of-the-Science Conference Statement on the "Role of active surveillance in the management of men with localized prostate cancer" pointed out the many unanswered questions about observational strategies for prostate cancer that require further research and clarification. These included:

<span class="mw-page-title-main">Triple test score</span>

The triple test score is a diagnostic tool for examining potentially cancerous breasts. Diagnostic accuracy of the triple test score is nearly 100%. Scoring includes using the procedures of physical examination, mammography and needle biopsy. If the results of a triple test score are greater than five, an excisional biopsy is indicated.

PI-RADS is an acronym for Prostate Imaging Reporting and Data System, defining standards of high-quality clinical service for multi-parametric Magnetic Resonance Imaging (mpMRI), including image creation and reporting.

<span class="mw-page-title-main">Breast imaging</span>

In medicine, breast imaging is a sub-speciality of diagnostic radiology that involves imaging of the breasts for screening or diagnostic purposes. There are various methods of breast imaging using a variety of technologies as described in detail below. Traditional screening and diagnostic mammography uses x-ray technology and has been the mainstay of breast imaging for many decades. Breast tomosynthesis is a relatively new digital x-ray mammography technique that produces multiple image slices of the breast similar to, but distinct from, computed tomography (CT). Xeromammography and galactography are somewhat outdated technologies that also use x-ray technology and are now used infrequently in the detection of breast cancer. Breast ultrasound is another technology employed in diagnosis and screening that can help differentiate between fluid filled and solid lesions, an important factor to determine if a lesion may be cancerous. Breast MRI is a technology typically reserved for high-risk patients and patients recently diagnosed with breast cancer. Lastly, scintimammography is used in a subgroup of patients who have abnormal mammograms or whose screening is not reliable on the basis of using traditional mammography or ultrasound.

Caroline M. Moore is the first woman to be made a professor of urology in the United Kingdom. She works in the diagnosis and treatment of prostate cancer at University College London.

Hashim U. Ahmed is a British surgeon, medical researcher and author of publications in the field of prostate cancer diagnostics and treatment; his research has contributed to changes in the way men with suspected prostate cancer and men with prostate enlargement are diagnosed and treated. He is Professor and Chair of Urology at Imperial College Healthcare NHS Trust and Consultant Urological Surgeon at both Charing Cross Hospital and BUPA Cromwell Hospital.

<span class="mw-page-title-main">Padeliporfin</span> Medication for prostate cancer

Padeliporfin, sold under the brand name Tookad, is a medication used to treat men with prostate cancer.

Focused-ultrasound-mediated diagnostics or FUS-mediated diagnostics are an area of clinical diagnostic tools that use ultrasound to detect diseases and cancers. Although ultrasound has been used for imaging in various settings, focused-ultrasound refers to the detection of specific cells and biomarkers under flow combining ultrasound with lasers, microbubbles, and imaging techniques. Current diagnostic techniques for detecting tumors and diseases using biopsies often include invasive procedures and require improved accuracy, especially in cases such as glioblastoma and melanoma. The field of FUS-mediated diagnostics targeting cells and biomarkers is being investigated for overcoming these limitations.

References

  1. Ilic D, Djulbegovic M, Jung JH, Hwang EC, Zhou Q, Cleves A, et al. (September 2018). "Prostate cancer screening with prostate-specific antigen (PSA) test: a systematic review and meta-analysis". BMJ. 362: k3519. doi:10.1136/bmj.k3519. PMC   6283370 . PMID   30185521.
  2. 1 2 Bell N, Connor Gorber S, Shane A, Joffres M, Singh H, Dickinson J, et al. (November 2014). "Recommendations on screening for prostate cancer with the prostate-specific antigen test". CMAJ. 186 (16): 1225–34. doi:10.1503/cmaj.140703. PMC   4216256 . PMID   25349003.
  3. Ghei M, Pericleous S, Kumar A, Miller R, Nathan S, Maraj BH (September 2005). "Finger-guided transrectal biopsy of the prostate: a modified, safer technique". Annals of the Royal College of Surgeons of England. 87 (5): 386–7. PMC   1963966 . PMID   16402467.
  4. 1 2 Roberts MJ, Bennett HY, Harris PN, Holmes M, Grummet J, Naber K, Wagenlehner FM (June 2017). "Prostate Biopsy-related Infection: A Systematic Review of Risk Factors, Prevention Strategies, and Management Approaches" (PDF). Urology. 104: 11–21. doi:10.1016/j.urology.2016.12.011. PMID   28007492.
  5. Patel AR, Jones JS (May 2009). "Optimal biopsy strategies for the diagnosis and staging of prostate cancer". Current Opinion in Urology. 19 (3): 232–7. doi:10.1097/MOU.0b013e328329a33e. PMID   19365892.
  6. 1 2 PROMIS - Prostate MRI Imaging Study. An evaluation of multi-parametric magnetic resonance imaging in the diagnosis and characterisation of prostate cancer. (UK) Medical Research Council - Clinical Trials Unit - PROMIS Trials Office. MRC: PR11, 2 February 2012
  7. Taira AV, Merrick GS, Galbreath RW, Andreini H, Taubenslag W, Curtis R, et al. (March 2010). "Performance of transperineal template-guided mapping biopsy in detecting prostate cancer in the initial and repeat biopsy setting". Prostate Cancer and Prostatic Diseases. 13 (1): 71–7. doi:10.1038/pcan.2009.42. PMC   2834351 . PMID   19786982.
  8. Yaghi MD, Kehinde EO (2015). "Oral antibiotics in trans-rectal prostate biopsy and its efficacy to reduce infectious complications: Systematic review". Urology Annals. 7 (4): 417–27. doi: 10.4103/0974-7796.164860 . PMC   4660689 . PMID   26538868.
  9. Bonekamp D, Jacobs MA, El-Khouli R, Stoianovici D, Macura KJ (May–June 2011). "Advancements in MR imaging of the prostate: from diagnosis to interventions". Radiographics. 31 (3): 677–703. doi:10.1148/rg.313105139. PMC   3093638 . PMID   21571651.
  10. Isebaert S, Van den Bergh L, Haustermans K, Joniau S, Lerut E, De Wever L, et al. (June 2013). "Multiparametric MRI for prostate cancer localization in correlation to whole-mount histopathology". Journal of Magnetic Resonance Imaging. 37 (6): 1392–401. doi: 10.1002/jmri.23938 . PMID   23172614.
  11. 1 2 Marks L, Young S, Natarajan S (January 2013). "MRI-ultrasound fusion for guidance of targeted prostate biopsy". Current Opinion in Urology. 23 (1): 43–50. doi:10.1097/MOU.0b013e32835ad3ee. PMC   3581822 . PMID   23138468.
  12. Pokorny MR, de Rooij M, Duncan E, Schröder FH, Parkinson R, Barentsz JO, Thompson LC (July 2014). "Prospective study of diagnostic accuracy comparing prostate cancer detection by transrectal ultrasound-guided biopsy versus magnetic resonance (MR) imaging with subsequent MR-guided biopsy in men without previous prostate biopsies". European Urology. 66 (1): 22–9. doi:10.1016/j.eururo.2014.03.002. PMID   24666839.
  13. Moore CM, Kasivisvanathan V, Eggener S, Emberton M, Fütterer JJ, Gill IS, et al. (October 2013). "Standards of reporting for MRI-targeted biopsy studies (START) of the prostate: recommendations from an International Working Group". European Urology. 64 (4): 544–52. doi:10.1016/j.eururo.2013.03.030. PMID   23537686.
  14. Hambrock T, Hoeks C, Hulsbergen-van de Kaa C, Scheenen T, Fütterer J, Bouwense S, et al. (January 2012). "Prospective assessment of prostate cancer aggressiveness using 3-T diffusion-weighted magnetic resonance imaging-guided biopsies versus a systematic 10-core transrectal ultrasound prostate biopsy cohort". European Urology. 61 (1): 177–84. doi:10.1016/j.eururo.2011.08.042. hdl: 2066/109206 . PMID   21924545. S2CID   7076555.
  15. 1 2 Sonn GA, Natarajan S, Margolis DJ, MacAiran M, Lieu P, Huang J, et al. (January 2013). "Targeted biopsy in the detection of prostate cancer using an office based magnetic resonance ultrasound fusion device". The Journal of Urology. 189 (1): 86–91. doi:10.1016/j.juro.2012.08.095. PMC   3561472 . PMID   23158413.
  16. Vourganti S, Rastinehad A, Yerram N, Nix J, Volkin D, Hoang A, et al. (December 2012). "Multiparametric magnetic resonance imaging and ultrasound fusion biopsy detect prostate cancer in patients with prior negative transrectal ultrasound biopsies". The Journal of Urology. 188 (6): 2152–2157. doi:10.1016/j.juro.2012.08.025. PMC   3895467 . PMID   23083875.
  17. Kuru TH, Roethke MC, Seidenader J, Simpfendörfer T, Boxler S, Alammar K, et al. (October 2013). "Critical evaluation of magnetic resonance imaging targeted, transrectal ultrasound guided transperineal fusion biopsy for detection of prostate cancer". The Journal of Urology. 190 (4): 1380–6. doi:10.1016/j.juro.2013.04.043. PMID   23608676.
  18. Fiard G, Hohn N, Descotes JL, Rambeaud JJ, Troccaz J, Long JA (June 2013). "Targeted MRI-guided prostate biopsies for the detection of prostate cancer: initial clinical experience with real-time 3-dimensional transrectal ultrasound guidance and magnetic resonance/transrectal ultrasound image fusion". Urology. 81 (6): 1372–8. doi:10.1016/j.urology.2013.02.022. PMID   23540865.
  19. "AdMeTech". www.admetech.org. Retrieved 2015-09-28.
  20. "Prostate Imaging Reporting and Data System (PI-RADS) - American College of Radiology". www.acr.org. Retrieved 2015-09-28.
  21. Weinreb JC, Barentsz JO, Choyke PL, Cornud F, Haider MA, Macura KJ, et al. (January 2016). "PI-RADS Prostate Imaging - Reporting and Data System: 2015, Version 2". European Urology. 69 (1): 16–40. doi:10.1016/j.eururo.2015.08.052. PMC   6467207 . PMID   26427566.
  22. "Search of: prostate mri biopsy - List Results - ClinicalTrials.gov". www.clinicaltrials.gov.
  23. Roberts MJ, Bennett HY, Harris PN, Holmes M, Grummet J, Naber K, Wagenlehner FM (June 2017). "Prostate Biopsy-related Infection: A Systematic Review of Risk Factors, Prevention Strategies, and Management Approaches" (PDF). Urology. 104: 11–21. doi:10.1016/j.urology.2016.12.011. PMID   28007492.
  24. "Five Tips for a Safe Endocavity Biopsy". EDM Medical Solutions. 21 September 2018.
  25. Chuang AY, DeMarzo AM, Veltri RW, Sharma RB, Bieberich CJ, Epstein JI (August 2007). "Immunohistochemical differentiation of high-grade prostate carcinoma from urothelial carcinoma". The American Journal of Surgical Pathology. 31 (8): 1246–55. doi:10.1097/PAS.0b013e31802f5d33. PMID   17667550. S2CID   11535862.