Quasitoric manifold

Last updated

In mathematics, a quasitoric manifold is a topological analogue of the nonsingular projective toric variety of algebraic geometry. A smooth -dimensional manifold is a quasitoric manifold if it admits a smooth, locally standard action of an -dimensional torus, with orbit space an -dimensional simple convex polytope.

Contents

Quasitoric manifolds were introduced in 1991 by M. Davis and T. Januszkiewicz, [1] who called them "toric manifolds". However, the term "quasitoric manifold" was eventually adopted to avoid confusion with the class of compact smooth toric varieties, which are known to algebraic geometers as toric manifolds. [2]

Quasitoric manifolds are studied in a variety of contexts in algebraic topology, such as complex cobordism theory, and the other oriented cohomology theories. [3]

Definitions

Denote the -th subcircle of the -torus by so that . Then coordinate-wise multiplication of on is called the standard representation.

Given open sets in and in , that are closed under the action of , a -action on is defined to be locally isomorphic to the standard representation if , for all in , in , where is a homeomorphism , and is an automorphism of .

Given a simple convex polytope with facets, a -manifold is a quasitoric manifold over if,

  1. the -action is locally isomorphic to the standard representation,
  2. there is a projection that maps each -dimensional orbit to a point in the interior of an -dimensional face of , for .

The definition implies that the fixed points of under the -action are mapped to the vertices of by , while points where the action is free project to the interior of the polytope.

The dicharacteristic function

A quasitoric manifold can be described in terms of a dicharacteristic function and an associated dicharacteristic matrix. In this setting it is useful to assume that the facets of are ordered so that the intersection is a vertex of , called the initial vertex.

A dicharacteristic function is a homomorphism , such that if is a codimension- face of , then is a monomorphism on restriction to the subtorus in .

The restriction of λ to the subtorus corresponding to the initial vertex is an isomorphism, and so can be taken to be a basis for the Lie algebra of . The epimorphism of Lie algebras associated to λ may be described as a linear transformation , represented by the dicharacteristic matrix given by

The th column of is a primitive vector in , called the facet vector. As each facet vector is primitive, whenever the facets meet in a vertex, the corresponding columns form a basis of , with determinant equal to . The isotropy subgroup associated to each facet is described by

for some in .

In their original treatment of quasitoric manifolds, Davis and Januskiewicz [1] introduced the notion of a characteristic function that mapped each facet of the polytope to a vector determining the isotropy subgroup of the facet, but this is only defined up to sign. In more recent studies of quasitoric manifolds, this ambiguity has been removed by the introduction of the dicharacteristic function and its insistence that each circle be oriented, forcing a choice of sign for each vector . The notion of the dicharacteristic function was originally introduced V. Buchstaber and N. Ray [4] to enable the study of quasitoric manifolds in complex cobordism theory. This was further refined by introducing the ordering of the facets of the polytope to define the initial vertex, which eventually leads to the above neat representation of the dicharacteristic matrix as , where is the identity matrix and is an submatrix. [5]

Relation to the moment-angle complex

The kernel of the dicharacteristic function acts freely on the moment angle complex , and so defines a principal -bundle over the resulting quotient space . This quotient space can be viewed as

where pairs , of are identified if and only if and is in the image of on restriction to the subtorus that corresponds to the unique face of containing the point , for some .

It can be shown that any quasitoric manifold over is equivariently diffeomorphic to a quasitoric manifold of the form of the quotient space above. [6]

Examples

The moment angle complex is the -sphere , the kernel is the diagonal subgroup , so the quotient of under the action of is . [7]

for integers .

The moment angle complex is a product of copies of 3-sphere embedded in , the kernel is given by

,

so that the quotient of under the action of is the -th stage of a Bott tower. [8] The integer values are the tensor powers of the line bundles whose product is used in the iterated sphere-bundle construction of the Bott tower. [9]

The cohomology ring of a quasitoric manifold

Canonical complex line bundles over given by

,

can be associated with each facet of , for , where acts on , by the restriction of to the -th subcircle of embedded in . These bundles are known as the facial bundles associated to the quasitoric manifold. By the definition of , the preimage of a facet is a -dimensional quasitoric facial submanifold over , whose isotropy subgroup is the restriction of on the subcircle of . Restriction of to gives the normal 2-plane bundle of the embedding of in .

Let in denote the first Chern class of . The integral cohomology ring is generated by , for , subject to two sets of relations. The first are the relations generated by the Stanley–Reisner ideal of ; linear relations determined by the dicharacterstic function comprise the second set:

.

Therefore only are required to generate multiplicatively. [1]

Comparison with toric manifolds

Notes

  1. 1 2 3 M. Davis and T. Januskiewicz, 1991.
  2. V. Buchstaber and T. Panov, 2002.
  3. V. Buchstaber and N. Ray, 2008.
  4. V. Buchstaber and N. Ray, 2001.
  5. V. Buchstaber, T. Panov and N. Ray, 2007.
  6. M. Davis and T. Januskiewicz, 1991, Proposition 1.8.
  7. V. Buchstaber, T. Panov and N. Ray, 2007, Example 3.11.
  8. V. Buchstaber, T. Panov and N. Ray, 2007, Example 3.12.
  9. Y. Civan and N. Ray, 2005.
  10. M. Masuda and D. Y. Suh 2007.

Related Research Articles

<span class="mw-page-title-main">Semidirect product</span> Operation in group theory

In mathematics, specifically in group theory, the concept of a semidirect product is a generalization of a direct product. There are two closely related concepts of semidirect product:

In mathematics, the Hodge star operator or Hodge star is a linear map defined on the exterior algebra of a finite-dimensional oriented vector space endowed with a nondegenerate symmetric bilinear form. Applying the operator to an element of the algebra produces the Hodge dual of the element. This map was introduced by W. V. D. Hodge.

In mathematics, the spectral radius of a square matrix is the maximum of the absolute values of its eigenvalues. More generally, the spectral radius of a bounded linear operator is the supremum of the absolute values of the elements of its spectrum. The spectral radius is often denoted by ρ(·).

In mathematics, smooth functions and analytic functions are two very important types of functions. One can easily prove that any analytic function of a real argument is smooth. The converse is not true, as demonstrated with the counterexample below.

In linear algebra, the Frobenius companion matrix of the monic polynomial

Quantum statistical mechanics is statistical mechanics applied to quantum mechanical systems. In quantum mechanics a statistical ensemble is described by a density operator S, which is a non-negative, self-adjoint, trace-class operator of trace 1 on the Hilbert space H describing the quantum system. This can be shown under various mathematical formalisms for quantum mechanics. One such formalism is provided by quantum logic.

<span class="mw-page-title-main">Real coordinate space</span> Space formed by the n-tuples of real numbers

In mathematics, the real coordinate space of dimension n, denoted Rn or , is the set of the n-tuples of real numbers, that is the set of all sequences of n real numbers. Special cases are called the real lineR1 and the real coordinate planeR2. With component-wise addition and scalar multiplication, it is a real vector space, and its elements are called coordinate vectors.

<span class="mw-page-title-main">Complex torus</span>

In mathematics, a complex torus is a particular kind of complex manifold M whose underlying smooth manifold is a torus in the usual sense. Here N must be the even number 2n, where n is the complex dimension of M.

In the mathematical discipline of matrix theory, a Jordan matrix, named after Camille Jordan, is a block diagonal matrix over a ring R, where each block along the diagonal, called a Jordan block, has the following form:

The Minakshisundaram–Pleijel zeta function is a zeta function encoding the eigenvalues of the Laplacian of a compact Riemannian manifold. It was introduced by Subbaramiah Minakshisundaram and Åke Pleijel (1949). The case of a compact region of the plane was treated earlier by Torsten Carleman (1935).

In mathematics, particularly linear algebra, the Schur–Horn theorem, named after Issai Schur and Alfred Horn, characterizes the diagonal of a Hermitian matrix with given eigenvalues. It has inspired investigations and substantial generalizations in the setting of symplectic geometry. A few important generalizations are Kostant's convexity theorem, Atiyah–Guillemin–Sternberg convexity theorem, Kirwan convexity theorem.

<span class="mw-page-title-main">Lie point symmetry</span>

Lie point symmetry is a concept in advanced mathematics. Towards the end of the nineteenth century, Sophus Lie introduced the notion of Lie group in order to study the solutions of ordinary differential equations (ODEs). He showed the following main property: the order of an ordinary differential equation can be reduced by one if it is invariant under one-parameter Lie group of point transformations. This observation unified and extended the available integration techniques. Lie devoted the remainder of his mathematical career to developing these continuous groups that have now an impact on many areas of mathematically based sciences. The applications of Lie groups to differential systems were mainly established by Lie and Emmy Noether, and then advocated by Élie Cartan.

In probability theory, concentration inequalities provide bounds on how a random variable deviates from some value. The law of large numbers of classical probability theory states that sums of independent random variables are, under very mild conditions, close to their expectation with a large probability. Such sums are the most basic examples of random variables concentrated around their mean. Recent results show that such behavior is shared by other functions of independent random variables.

In mathematics, Minkowski's second theorem is a result in the geometry of numbers about the values taken by a norm on a lattice and the volume of its fundamental cell.

In combinatorial mathematics, the hook length formula is a formula for the number of standard Young tableaux whose shape is a given Young diagram. It has applications in diverse areas such as representation theory, probability, and algorithm analysis; for example, the problem of longest increasing subsequences. A related formula gives the number of semi-standard Young tableaux, which is a specialization of a Schur polynomial.

Quantum optimization algorithms are quantum algorithms that are used to solve optimization problems. Mathematical optimization deals with finding the best solution to a problem from a set of possible solutions. Mostly, the optimization problem is formulated as a minimization problem, where one tries to minimize an error which depends on the solution: the optimal solution has the minimal error. Different optimization techniques are applied in various fields such as mechanics, economics and engineering, and as the complexity and amount of data involved rise, more efficient ways of solving optimization problems are needed. Quantum computing may allow problems which are not practically feasible on classical computers to be solved, or suggest a considerable speed up with respect to the best known classical algorithm.

In mathematics, and especially differential and algebraic geometry, K-stability is an algebro-geometric stability condition, for complex manifolds and complex algebraic varieties. The notion of K-stability was first introduced by Gang Tian and reformulated more algebraically later by Simon Donaldson. The definition was inspired by a comparison to geometric invariant theory (GIT) stability. In the special case of Fano varieties, K-stability precisely characterises the existence of Kähler–Einstein metrics. More generally, on any compact complex manifold, K-stability is conjectured to be equivalent to the existence of constant scalar curvature Kähler metrics.

In mathematics, calculus on Euclidean space is a generalization of calculus of functions in one or several variables to calculus of functions on Euclidean space as well as a finite-dimensional real vector space. This calculus is also known as advanced calculus, especially in the United States. It is similar to multivariable calculus but is somewhat more sophisticated in that it uses linear algebra more extensively and covers some concepts from differential geometry such as differential forms and Stokes' formula in terms of differential forms. This extensive use of linear algebra also allows a natural generalization of multivariable calculus to calculus on Banach spaces or topological vector spaces.

Tau functions are an important ingredient in the modern mathematical theory of integrable systems, and have numerous applications in a variety of other domains. They were originally introduced by Ryogo Hirota in his direct method approach to soliton equations, based on expressing them in an equivalent bilinear form.

<span class="mw-page-title-main">Representations of classical Lie groups</span>

In mathematics, the finite-dimensional representations of the complex classical Lie groups , , , , , can be constructed using the general representation theory of semisimple Lie algebras. The groups , , are indeed simple Lie groups, and their finite-dimensional representations coincide with those of their maximal compact subgroups, respectively , , . In the classification of simple Lie algebras, the corresponding algebras are

References