RRM2B

Last updated
RRM2B
Protein RRM2B PDB 2VUX.png
Available structures
PDB Ortholog search: PDBe RCSB
Identifiers
Aliases RRM2B , MTDPS8A, MTDPS8B, P53R2, ribonucleotide reductase regulatory TP53 inducible subunit M2B, RCDFRD
External IDs OMIM: 604712 MGI: 2155865 HomoloGene: 56723 GeneCards: RRM2B
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_015713
NM_001172477
NM_001172478

NM_199476
NM_001357022
NM_001357023

RefSeq (protein)

NP_001165948
NP_001165949
NP_056528

NP_955770
NP_001343951
NP_001343952

Location (UCSC) Chr 8: 102.2 – 102.24 Mb Chr 15: 37.92 – 37.96 Mb
PubMed search [3] [4]
Wikidata
View/Edit Human View/Edit Mouse

Ribonucleotide-diphosphate reductase subunit M2 B is an enzyme that in humans is encoded by the RRM2B gene. [5] [6] [7] [8] The gene encoding the RRM2B protein is located on chromosome 8, at position 8q23.1. The gene and its products are also known by designations MTDPS8A, MTDPS8B, and p53R2.

Contents

Function

RRM2B codes for one of two versions of the R2 subunit of ribonucleotide reductase, which generates nucleotide precursors required for DNA replication by reducing ribonucleoside diphosphates to deoxyribonucloside diphosphates. The version of R2 encoded by RRM2B is induced by p53, and is required for normal DNA repair and mtDNA synthesis in non-proliferating cells. The other form of R2 is expressed only in dividing cells. [9]

Interactions

RRM2B has been shown to interact with Mdm2 [10] and Ataxia telangiectasia mutated. [10]

Clinical relevance

Abnormalities in this gene are one of the causes of mitochondrial DNA depletion syndrome (MDDS). [11] [12] Neonatal hypotonia, developmental delay, encephalopathy, with seizures, deafness and lactic acidosis have been associated with mutations in this gene. MDDS is fatal, with death occurring from respiratory failure in early childhood. [13] [14]

It has been associated with some cases of pediatric acute liver failure. [15]

Mutations in this gene have been shown to cause progressive external ophthalmoplegia. [16]

Increased expression of RRM2B has been correlated with gemcitabine resistance in human cholangiocarcinoma cells [17] and may be predictive of lack of clinical benefit from gemcitabine for human cancers.

Related Research Articles

<span class="mw-page-title-main">Ribonucleotide reductase</span> Class of enzymes

Ribonucleotide reductase (RNR), also known as ribonucleoside diphosphate reductase (rNDP), is an enzyme that catalyzes the formation of deoxyribonucleotides from ribonucleotides. It catalyzes this formation by removing the 2'-hydroxyl group of the ribose ring of nucleoside diphosphates. This reduction produces deoxyribonucleotides. Deoxyribonucleotides in turn are used in the synthesis of DNA. The reaction catalyzed by RNR is strictly conserved in all living organisms. Furthermore, RNR plays a critical role in regulating the total rate of DNA synthesis so that DNA to cell mass is maintained at a constant ratio during cell division and DNA repair. A somewhat unusual feature of the RNR enzyme is that it catalyzes a reaction that proceeds via a free radical mechanism of action. The substrates for RNR are ADP, GDP, CDP and UDP. dTDP is synthesized by another enzyme from dTMP.

<span class="mw-page-title-main">Parkin (protein)</span>

Parkin is a 465-amino acid residue E3 ubiquitin ligase, a protein that in humans and mice is encoded by the PARK2 gene. Parkin plays a critical role in ubiquitination – the process whereby molecules are covalently labelled with ubiquitin (Ub) and directed towards degradation in proteasomes or lysosomes. Ubiquitination involves the sequential action of three enzymes. First, an E1 ubiquitin-activating enzyme binds to inactive Ub in eukaryotic cells via a thioester bond and mobilises it in an ATP-dependent process. Ub is then transferred to an E2 ubiquitin-conjugating enzyme before being conjugated to the target protein via an E3 ubiquitin ligase. There exists a multitude of E3 ligases, which differ in structure and substrate specificity to allow selective targeting of proteins to intracellular degradation.

<span class="mw-page-title-main">ATM serine/threonine kinase</span>

ATM serine/threonine kinase or Ataxia-telangiectasia mutated, symbol ATM, is a serine/threonine protein kinase that is recruited and activated by DNA double-strand breaks, oxidative stress, topoisomerase cleavage complexes, splicing intermediates, R-loops and in some cases by single-strand DNA breaks. It phosphorylates several key proteins that initiate activation of the DNA damage checkpoint, leading to cell cycle arrest, DNA repair or apoptosis. Several of these targets, including p53, CHK2, BRCA1, NBS1 and H2AX are tumor suppressors.

<span class="mw-page-title-main">SDHA</span> Protein-coding gene in the species Homo sapiens

Succinate dehydrogenase complex, subunit A, flavoprotein variant is a protein that in humans is encoded by the SDHA gene. This gene encodes a major catalytic subunit of succinate-ubiquinone oxidoreductase, a complex of the mitochondrial respiratory chain. The complex is composed of four nuclear-encoded subunits and is localized in the mitochondrial inner membrane. SDHA contains the FAD binding site where succinate is deprotonated and converted to fumarate. Mutations in this gene have been associated with a form of mitochondrial respiratory chain deficiency known as Leigh Syndrome. A pseudogene has been identified on chromosome 3q29. Alternatively spliced transcript variants encoding different isoforms have been found for this gene.

<span class="mw-page-title-main">HADHB</span> Protein-coding gene in the species Homo sapiens

Trifunctional enzyme subunit beta, mitochondrial (TP-beta) also known as 3-ketoacyl-CoA thiolase, acetyl-CoA acyltransferase, or beta-ketothiolase is an enzyme that in humans is encoded by the HADHB gene.

<span class="mw-page-title-main">DNAJA3</span> Protein-coding gene in the species Homo sapiens

DnaJ homolog subfamily A member 3, mitochondrial, also known as Tumorous imaginal disc 1 (TID1), is a protein that in humans is encoded by the DNAJA3 gene on chromosome 16. This protein belongs to the DNAJ/Hsp40 protein family, which is known for binding and activating Hsp70 chaperone proteins to perform protein folding, degradation, and complex assembly. As a mitochondrial protein, it is involved in maintaining membrane potential and mitochondrial DNA (mtDNA) integrity, as well as cellular processes such as cell movement, growth, and death. Furthermore, it is associated with a broad range of diseases, including neurodegenerative diseases, inflammatory diseases, and cancers.

<span class="mw-page-title-main">Cytochrome c oxidase subunit I</span> Enzyme of the respiratory chain encoded by the mitochondrial genome

Cytochrome c oxidase I (COX1) also known as mitochondrially encoded cytochrome c oxidase I (MT-CO1) is a protein that is encoded by the MT-CO1 gene in eukaryotes. The gene is also called COX1, CO1, or COI. Cytochrome c oxidase I is the main subunit of the cytochrome c oxidase complex. In humans, mutations in MT-CO1 have been associated with Leber's hereditary optic neuropathy (LHON), acquired idiopathic sideroblastic anemia, Complex IV deficiency, colorectal cancer, sensorineural deafness, and recurrent myoglobinuria.

<span class="mw-page-title-main">POLD1</span> Protein-coding gene in the species Homo sapiens

The gene polymerase delta 1 (POLD1) encodes the large, POLD1/p125, catalytic subunit of the DNA polymerase delta (Polδ) complex. The Polδ enzyme is responsible for synthesizing the lagging strand of DNA, and has also been implicated in some activities at the leading strand. The POLD1/p125 subunit encodes both DNA polymerizing and exonuclease domains, which provide the protein an important second function in proofreading to ensure replication accuracy during DNA synthesis, and in a number of types of replication-linked DNA repair following DNA damage.

<span class="mw-page-title-main">PRDX3</span> Protein-coding gene in the species Homo sapiens

Thioredoxin-dependent peroxide reductase, mitochondrial is an enzyme that in humans is encoded by the PRDX3 gene. It is a member of the peroxiredoxin family of antioxidant enzymes.

<span class="mw-page-title-main">CYC1</span> Protein-coding gene in the species Homo sapiens

Cytochrome c1, heme protein, mitochondrial (CYC1), also known as UQCR4, MC3DN6, Complex III subunit 4, Cytochrome b-c1 complex subunit 4, or Ubiquinol-cytochrome-c reductase complex cytochrome c1 subunit is a protein that in humans is encoded by the CYC1 gene. CYC1 is a respiratory subunit of Ubiquinol Cytochrome c Reductase, which is located in the inner mitochondrial membrane and is part of the electron transport chain. Mutations in this gene may cause mitochondrial complex III deficiency, nuclear, type 6.

<span class="mw-page-title-main">UQCRC1</span> Protein-coding gene in the species Homo sapiens

Cytochrome b-c1 complex subunit 1, mitochondrial is a protein that in humans is encoded by the UQCRC1 gene.

<span class="mw-page-title-main">NDUFS3</span> Protein-coding gene in the species Homo sapiens

NADH dehydrogenase [ubiquinone] iron-sulfur protein 3, mitochondrial is an enzyme that in humans is encoded by the NDUFS3 gene on chromosome 11. This gene encodes one of the iron-sulfur protein (IP) components of mitochondrial NADH:ubiquinone oxidoreductase. Mutations in this gene are associated with Leigh syndrome resulting from mitochondrial complex I deficiency.

<span class="mw-page-title-main">UQCRB</span> Protein

Ubiquinol-cytochrome c reductase binding protein, also known as UQCRB, Complex III subunit 7, QP-C, or Ubiquinol-cytochrome c reductase complex 14 kDa protein is a protein which in humans is encoded by the UQCRB gene. This gene encodes a subunit of the ubiquinol-cytochrome c oxidoreductase complex, which consists of one mitochondrial-encoded and 10 nuclear-encoded subunits. Mutations in this gene are associated with mitochondrial complex III deficiency. Alternatively spliced transcript variants have been found for this gene. Related pseudogenes have been identified on chromosomes 1, 5 and X.

<span class="mw-page-title-main">NDUFS5</span> Protein-coding gene in the species Homo sapiens

NADH dehydrogenase [ubiquinone] iron-sulfur protein 5 is an enzyme that in humans is encoded by the NDUFS5 gene.

<span class="mw-page-title-main">CCNF</span> Protein-coding gene in humans

G2/mitotic-specific cyclin-F is a protein that in humans is encoded by the CCNF gene.

<span class="mw-page-title-main">RRM1</span> Protein-coding gene in the species Homo sapiens

Ribonucleoside-diphosphate reductase large subunit is an enzyme that in humans is encoded by the RRM1 gene.

<span class="mw-page-title-main">P53AIP1</span> Protein-coding gene in the species Homo sapiens

p53-regulated apoptosis-inducing protein 1 is a protein that in humans is encoded by the TP53AIP1 gene.

<span class="mw-page-title-main">RRM2</span> Protein-coding gene in the species Homo sapiens

Ribonucleoside-diphosphate reductase subunit M2, also known as ribonucleotide reductase small subunit, is an enzyme that in humans is encoded by the RRM2 gene.

<span class="mw-page-title-main">RNASEH2B</span> Protein-coding gene in the species Homo sapiens

Ribonuclease H2, subunit B is a protein in humans is encoded by the RNASEH2B gene. RNase H2 is composed of a single catalytic subunit (A) and two non-catalytic subunits, and degrades the RNA of RNA:DNA hybrids. The non-catalytic B subunit of RNase H2 is thought to play a role in DNA replication.

<span class="mw-page-title-main">Mitochondrial DNA depletion syndrome</span> Medical condition

Mitochondrial DNA depletion syndrome, or Alper's disease, is any of a group of autosomal recessive disorders that cause a significant drop in mitochondrial DNA in affected tissues. Symptoms can be any combination of myopathic, hepatopathic, or encephalomyopathic. These syndromes affect tissue in the muscle, liver, or both the muscle and brain, respectively. The condition is typically fatal in infancy and early childhood, though some have survived to their teenage years with the myopathic variant and some have survived into adulthood with the SUCLA2 encephalomyopathic variant. There is currently no curative treatment for any form of MDDS, though some preliminary treatments have shown a reduction in symptoms.

References

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000048392 - Ensembl, May 2017
  2. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000022292 - Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. Tanaka H, Arakawa H, Yamaguchi T, Shiraishi K, Fukuda S, Matsui K, Takei Y, Nakamura Y (March 2000). "A ribonucleotide reductase gene involved in a p53-dependent cell-cycle checkpoint for DNA damage". Nature. 404 (6773): 42–9. Bibcode:2000Natur.404...42T. doi:10.1038/35003506. PMID   10716435. S2CID   4327888.
  6. Nakano K, Bálint E, Ashcroft M, Vousden KH (August 2000). "A ribonucleotide reductase gene is a transcriptional target of p53 and p73". Oncogene. 19 (37): 4283–9. doi: 10.1038/sj.onc.1203774 . PMID   10980602.
  7. Bourdon A, Minai L, Serre V, Jais JP, Sarzi E, Aubert S, Chrétien D, de Lonlay P, Paquis-Flucklinger V, Arakawa H, Nakamura Y, Munnich A, Rötig A (June 2007). "Mutation of RRM2B, encoding p53-controlled ribonucleotide reductase (p53R2), causes severe mitochondrial DNA depletion". Nature Genetics. 39 (6): 776–80. doi:10.1038/ng2040. PMID   17486094. S2CID   22103978.
  8. "Entrez Gene: RRM2B ribonucleotide reductase M2 B (TP53 inducible)".
  9. Copeland WC (2012). "Defects in mitochondrial DNA replication and human disease". Critical Reviews in Biochemistry and Molecular Biology. 47 (1): 64–74. doi:10.3109/10409238.2011.632763. PMC   3244805 . PMID   22176657.
  10. 1 2 Chang L, Zhou B, Hu S, Guo R, Liu X, Jones SN, Yen Y (November 2008). "ATM-mediated serine 72 phosphorylation stabilizes ribonucleotide reductase small subunit p53R2 protein against MDM2 to DNA damage". Proceedings of the National Academy of Sciences of the United States of America. 105 (47): 18519–24. Bibcode:2008PNAS..10518519C. doi: 10.1073/pnas.0803313105 . PMC   2587585 . PMID   19015526.
  11. Gorman GS, Taylor RW (April 17, 2014). "RRM2B-Related Mitochondrial Disease". GeneReviews. University of Washington, Seattle. PMID   24741716.
  12. "RRM2B-related mitochondrial DNA depletion syndrome, encephalomyopathic form with renal tubulopathy". United States National Library of Medicine . Retrieved 13 July 2017.
  13. Acham-Roschitz B, Plecko B, Lindbichler F, Bittner R, Mache CJ, Sperl W, Mayr JA (November 2009). "A novel mutation of the RRM2B gene in an infant with early fatal encephalomyopathy, central hypomyelination, and tubulopathy". Molecular Genetics and Metabolism. 98 (3): 300–4. doi:10.1016/j.ymgme.2009.06.012. PMID   19616983.
  14. Kropach N, Shkalim-Zemer V, Orenstein N, Scheuerman O, Straussberg R (May 2017). "Novel RRM2B Mutation and Severe Mitochondrial DNA Depletion: Report of 2 Cases and Review of the Literature". Neuropediatrics. 48 (6): 456–462. doi:10.1055/s-0037-1601867. PMID   28482374. S2CID   7809119.
  15. Valencia CA, Wang X, Wang J, Peters A, Simmons JR, Moran MC, Mathur A, Husami A, Qian Y, Sheridan R, Bove KE, Witte D, Huang T, Miethke AG (2016). "Deep Sequencing Reveals Novel Genetic Variants in Children with Acute Liver Failure and Tissue Evidence of Impaired Energy Metabolism". PLOS ONE. 11 (8): e0156738. Bibcode:2016PLoSO..1156738V. doi: 10.1371/journal.pone.0156738 . PMC   4970743 . PMID   27483465.
  16. Takata A, Kato M, Nakamura M, Yoshikawa T, Kanba S, Sano A, Kato T (September 2011). "Exome sequencing identifies a novel missense variant in RRM2B associated with autosomal recessive progressive external ophthalmoplegia". Genome Biology. 12 (9): R92. doi: 10.1186/gb-2011-12-9-r92 . PMC   3308055 . PMID   21951382.
  17. Sato J, Kimura T, Saito T, Anazawa T, Kenjo A, Sato Y, Tsuchiya T, Gotoh M (September 2011). "Gene expression analysis for predicting gemcitabine resistance in human cholangiocarcinoma". Journal of Hepato-Biliary-Pancreatic Sciences. 18 (5): 700–11. doi:10.1007/s00534-011-0376-7. PMID   21451941. S2CID   19975519.

Further reading