Regular 4-polytope

Last updated
The tesseract is one of 6 convex regular 4-polytopes Hypercube.svg
The tesseract is one of 6 convex regular 4-polytopes

In mathematics, a regular 4-polytope or regular polychoron is a regular four-dimensional polytope. They are the four-dimensional analogues of the regular polyhedra in three dimensions and the regular polygons in two dimensions.

Contents

There are six convex and ten star regular 4-polytopes, giving a total of sixteen.

History

The convex regular 4-polytopes were first described by the Swiss mathematician Ludwig Schläfli in the mid-19th century. [1] He discovered that there are precisely six such figures.

Schläfli also found four of the regular star 4-polytopes: the grand 120-cell, great stellated 120-cell, grand 600-cell, and great grand stellated 120-cell. He skipped the remaining six because he would not allow forms that failed the Euler characteristic on cells or vertex figures (for zero-hole tori: F  E + V = 2). That excludes cells and vertex figures such as the great dodecahedron {5,5/2} and small stellated dodecahedron {5/2,5}.

Edmund Hess (18431903) published the complete list in his 1883 German book Einleitung in die Lehre von der Kugelteilung mit besonderer Berücksichtigung ihrer Anwendung auf die Theorie der Gleichflächigen und der gleicheckigen Polyeder.

Construction

The existence of a regular 4-polytope is constrained by the existence of the regular polyhedra which form its cells and a dihedral angle constraint

to ensure that the cells meet to form a closed 3-surface.

The six convex and ten star polytopes described are the only solutions to these constraints.

There are four nonconvex Schläfli symbols {p,q,r} that have valid cells {p,q} and vertex figures {q,r}, and pass the dihedral test, but fail to produce finite figures: {3,5/2,3}, {4,3,5/2}, {5/2,3,4}, {5/2,3,5/2}.

Regular convex 4-polytopes

The regular convex 4-polytopes are the four-dimensional analogues of the Platonic solids in three dimensions and the convex regular polygons in two dimensions.

Each convex regular 4-polytope is bounded by a set of 3-dimensional cells which are all Platonic solids of the same type and size. These are fitted together along their respective faces (face-to-face) in a regular fashion, forming the surface of the 4-polytope which is a closed, curved 3-dimensional space (analogous to the way the surface of the earth is a closed, curved 2-dimensional space).

Properties

Like their 3-dimensional analogues, the convex regular 4-polytopes can be naturally ordered by size as a measure of 4-dimensional content (hypervolume) for the same radius. Each greater polytope in the sequence is rounder than its predecessor, enclosing more content [2] within the same radius. The 4-simplex (5-cell) is the limit smallest case, and the 120-cell is the largest. [lower-alpha 1]

Regular convex 4-polytopes
Symmetry group A4 B4 F4 H4
Name 5-cell

Hyper-tetrahedron
5-point

16-cell

Hyper-octahedron
8-point

8-cell

Hyper-cube
16-point

24-cell


24-point

600-cell

Hyper-icosahedron
120-point

120-cell

Hyper-dodecahedron
600-point

Schläfli symbol {3, 3, 3}{3, 3, 4}{4, 3, 3}{3, 4, 3}{3, 3, 5}{5, 3, 3}
Coxeter mirrors CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.pngCDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 5.pngCDel node.pngCDel node 1.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
Mirror dihedrals𝝅/3𝝅/3𝝅/3𝝅/2𝝅/2𝝅/2𝝅/3𝝅/3𝝅/4𝝅/2𝝅/2𝝅/2𝝅/4𝝅/3𝝅/3𝝅/2𝝅/2𝝅/2𝝅/3𝝅/4𝝅/3𝝅/2𝝅/2𝝅/2𝝅/3𝝅/3𝝅/5𝝅/2𝝅/2𝝅/2𝝅/5𝝅/3𝝅/3𝝅/2𝝅/2𝝅/2
Graph 4-simplex t0.svg 4-cube t3.svg 4-cube t0.svg 24-cell t0 F4.svg 600-cell graph H4.svg 120-cell graph H4.svg
Vertices5 tetrahedral8 octahedral16 tetrahedral24 cubical120 icosahedral600 tetrahedral
Edges 10 triangular24 square32 triangular96 triangular720 pentagonal1200 triangular
Faces10 triangles32 triangles24 squares96 triangles1200 triangles720 pentagons
Cells5 tetrahedra16 tetrahedra8 cubes24 octahedra600 tetrahedra120 dodecahedra
Tori 1 5-tetrahedron 2 8-tetrahedron 2 4-cube 4 6-octahedron 20 30-tetrahedron 12 10-dodecahedron
Inscribed120 in 120-cell675 in 120-cell2 16-cells3 8-cells25 24-cells10 600-cells
Great polygons 2 squares x 34 rectangles x 44 hexagons x 412 decagons x 6100 irregular hexagons x 4
Petrie polygons 1 pentagon x 21 octagon x 32 octagons x 42 dodecagons x 44 30-gons x 620 30-gons x 4
Long radius
Edge length
Short radius
Area
Volume
4-Content

The following table lists some properties of the six convex regular 4-polytopes. The symmetry groups of these 4-polytopes are all Coxeter groups and given in the notation described in that article. The number following the name of the group is the order of the group.

NamesImageFamily Schläfli
Coxeter
V E F C Vert.
fig.
Dual Symmetry group
5-cell
pentachoron
pentatope
4-simplex
4-simplex t0.svg n-simplex
(An family)
{3,3,3}
CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
51010
{3}
5
{3,3}
{3,3} self-dualA4
[3,3,3]
120
16-cell
hexadecachoron
4-orthoplex
4-cube t3.svg n-orthoplex
(Bn family)
{3,3,4}
CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png
82432
{3}
16
{3,3}
{3,4} 8-cellB4
[4,3,3]
384
8-cell
octachoron
tesseract
4-cube
4-cube t0.svg hypercube
n-cube
(Bn family)
{4,3,3}
CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
163224
{4}
8
{4,3}
{3,3} 16-cell
24-cell
icositetrachoron
octaplex
polyoctahedron
(pO)
24-cell t0 F4.svg Fn family{3,4,3}
CDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png
249696
{3}
24
{3,4}
{4,3} self-dualF4
[3,4,3]
1152
600-cell
hexacosichoron
tetraplex
polytetrahedron
(pT)
600-cell graph H4.svg n-pentagonal
polytope

(Hn family)
{3,3,5}
CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 5.pngCDel node.png
1207201200
{3}
600
{3,3}
{3,5} 120-cellH4
[5,3,3]
14400
120-cell
hecatonicosachoron
dodecacontachoron
dodecaplex
polydodecahedron
(pD)
120-cell graph H4.svg n-pentagonal
polytope

(Hn family)
{5,3,3}
CDel node 1.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
6001200720
{5}
120
{5,3}
{3,3} 600-cell

John Conway advocated the names simplex, orthoplex, tesseract, octaplex or polyoctahedron (pO), tetraplex or polytetrahedron (pT), and dodecaplex or polydodecahedron (pD). [3]

Norman Johnson advocated the names n-cell, or pentachoron, hexadecachoron, tesseract or octachoron, icositetrachoron, hexacosichoron, and hecatonicosachoron (or dodecacontachoron), coining the term polychoron being a 4D analogy to the 3D polyhedron, and 2D polygon, expressed from the Greek roots poly ("many") and choros ("room" or "space"). [4] [5]

The Euler characteristic for all 4-polytopes is zero, we have the 4-dimensional analogue of Euler's polyhedral formula:

where Nk denotes the number of k-faces in the polytope (a vertex is a 0-face, an edge is a 1-face, etc.).

The topology of any given 4-polytope is defined by its Betti numbers and torsion coefficients. [6]

As configurations

A regular 4-polytope can be completely described as a configuration matrix containing counts of its component elements. The rows and columns correspond to vertices, edges, faces, and cells. The diagonal numbers (upper left to lower right) say how many of each element occur in the whole 4-polytope. The non-diagonal numbers say how many of the column's element occur in or at the row's element. For example, there are 2 vertices in each edge (each edge has 2 vertices), and 2 cells meet at each face (each face belongs to 2 cells), in any regular 4-polytope. The configuration for the dual polytope can be obtained by rotating the matrix by 180 degrees. [7] [8]

5-cell
{3,3,3}
16-cell
{3,3,4}
8-cell
{4,3,3}
24-cell
{3,4,3}
600-cell
{3,3,5}
120-cell
{5,3,3}

Visualization

The following table shows some 2-dimensional projections of these 4-polytopes. Various other visualizations can be found in the external links below. The Coxeter-Dynkin diagram graphs are also given below the Schläfli symbol.

A4 = [3,3,3]B4 = [4,3,3]F4 = [3,4,3]H4 = [5,3,3]
5-cell 16-cell 8-cell 24-cell 600-cell 120-cell
{3,3,3}{3,3,4}{4,3,3}{3,4,3}{3,3,5}{5,3,3}
CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.pngCDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 5.pngCDel node.pngCDel node 1.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
Solid 3D orthographic projections
Tetrahedron.png
Tetrahedral
envelope

(cell/vertex-centered)
16-cell ortho cell-centered.png
Cubic envelope
(cell-centered)
Hexahedron.png
Cubic envelope
(cell-centered)
Ortho solid 24-cell.png
Cuboctahedral
envelope

(cell-centered)
Ortho solid 600-cell.png
Pentakis icosidodecahedral
envelope

(vertex-centered)
Ortho solid 120-cell.png
Truncated rhombic
triacontahedron
envelope

(cell-centered)
Wireframe Schlegel diagrams (Perspective projection)
Schlegel wireframe 5-cell.png
Cell-centered
Schlegel wireframe 16-cell.png
Cell-centered
Schlegel wireframe 8-cell.png
Cell-centered
Schlegel wireframe 24-cell.png
Cell-centered
Schlegel wireframe 600-cell vertex-centered.png
Vertex-centered
Schlegel wireframe 120-cell.png
Cell-centered
Wireframe stereographic projections (3-sphere)
Stereographic polytope 5cell.png Stereographic polytope 16cell.png Stereographic polytope 8cell.png Stereographic polytope 24cell.png Stereographic polytope 600cell.png Stereographic polytope 120cell.png

Regular star (Schläfli–Hess) 4-polytopes

This shows the relationships among the four-dimensional starry polytopes. The 2 convex forms and 10 starry forms can be seen in 3D as the vertices of a cuboctahedron. Relationship among regular star polychora.png
This shows the relationships among the four-dimensional starry polytopes. The 2 convex forms and 10 starry forms can be seen in 3D as the vertices of a cuboctahedron.
A subset of relations among 8 forms from the 120-cell, polydodecahedron (pD). The three operations {a,g,s} are commutable, defining a cubic framework. There are 7 densities seen in vertical positioning, with 2 dual forms having the same density. Relationship among regular star polychora-8.png
A subset of relations among 8 forms from the 120-cell, polydodecahedron (pD). The three operations {a,g,s} are commutable, defining a cubic framework. There are 7 densities seen in vertical positioning, with 2 dual forms having the same density.

The SchläfliHess 4-polytopes are the complete set of 10 regular self-intersecting star polychora (four-dimensional polytopes). [10] They are named in honor of their discoverers: Ludwig Schläfli and Edmund Hess. Each is represented by a Schläfli symbol {p,q,r} in which one of the numbers is 5/2. They are thus analogous to the regular nonconvex KeplerPoinsot polyhedra, which are in turn analogous to the pentagram.

Names

Their names given here were given by John Conway, extending Cayley's names for the Kepler–Poinsot polyhedra: along with stellated and great, he adds a grand modifier. Conway offered these operational definitions:

  1. stellation – replaces edges with longer edges in same lines. (Example: a pentagon stellates into a pentagram)
  2. greatening – replaces the faces with large ones in same planes. (Example: an icosahedron greatens into a great icosahedron)
  3. aggrandizement – replaces the cells with large ones in same 3-spaces. (Example: a 600-cell aggrandizes into a grand 600-cell)

John Conway names the 10 forms from 3 regular celled 4-polytopes: pT=polytetrahedron {3,3,5} (a tetrahedral 600-cell), pI=polyicoshedron {3,5,5/2} (an icosahedral 120-cell), and pD=polydodecahedron {5,3,3} (a dodecahedral 120-cell), with prefix modifiers: g, a, and s for great, (ag)grand, and stellated. The final stellation, the great grand stellated polydodecahedron contains them all as gaspD.

Symmetry

All ten polychora have [3,3,5] (H4) hexacosichoric symmetry. They are generated from 6 related Goursat tetrahedra rational-order symmetry groups: [3,5,5/2], [5,5/2,5], [5,3,5/2], [5/2,5,5/2], [5,5/2,3], and [3,3,5/2].

Each group has 2 regular star-polychora, except for two groups which are self-dual, having only one. So there are 4 dual-pairs and 2 self-dual forms among the ten regular star polychora.

Properties

Note:

The cells (polyhedra), their faces (polygons), the polygonal edge figures and polyhedral vertex figures are identified by their Schläfli symbols.

Name
Conway (abbrev.)
Orthogonal
projection
Schläfli
Coxeter
C
{p, q}
F
{p}
E
{r}
V
{q, r}
Dens. χ
Icosahedral 120-cell
polyicosahedron (pI)
Ortho solid 007-uniform polychoron 35p-t0.png {3,5,5/2}
CDel node 1.pngCDel 3.pngCDel node.pngCDel 5.pngCDel node.pngCDel 5.pngCDel rat.pngCDel d2.pngCDel node.png
120
{3,5}
Icosahedron.png
1200
{3}
Regular triangle.svg
720
{5/2}
Star polygon 5-2.svg
120
{5,5/2}
Great dodecahedron.png
4480
Small stellated 120-cell
stellated polydodecahedron (spD)
Ortho solid 010-uniform polychoron p53-t0.png {5/2,5,3}
CDel node.pngCDel 3.pngCDel node.pngCDel 5.pngCDel node.pngCDel 5.pngCDel rat.pngCDel d2.pngCDel node 1.png
120
{5/2,5}
Small stellated dodecahedron.png
720
{5/2}
Star polygon 5-2.svg
1200
{3}
Regular triangle.svg
120
{5,3}
Dodecahedron.png
4480
Great 120-cell
great polydodecahedron (gpD)
Ortho solid 008-uniform polychoron 5p5-t0.png {5,5/2,5}
CDel node 1.pngCDel 5.pngCDel node.pngCDel 5.pngCDel rat.pngCDel d2.pngCDel node.pngCDel 5.pngCDel node.png
120
{5,5/2}
Great dodecahedron.png
720
{5}
Regular pentagon.svg
720
{5}
Regular pentagon.svg
120
{5/2,5}
Small stellated dodecahedron.png
60
Grand 120-cell
grand polydodecahedron (apD)
Ortho solid 009-uniform polychoron 53p-t0.png {5,3,5/2}
CDel node 1.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node.pngCDel 5.pngCDel rat.pngCDel d2.pngCDel node.png
120
{5,3}
Dodecahedron.png
720
{5}
Regular pentagon.svg
720
{5/2}
Star polygon 5-2.svg
120
{3,5/2}
Great icosahedron.png
200
Great stellated 120-cell
great stellated polydodecahedron (gspD)
Ortho solid 012-uniform polychoron p35-t0.png {5/2,3,5}
CDel node.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node.pngCDel 5.pngCDel rat.pngCDel d2.pngCDel node 1.png
120
{5/2,3}
Great stellated dodecahedron.png
720
{5/2}
Star polygon 5-2.svg
720
{5}
Regular pentagon.svg
120
{3,5}
Icosahedron.png
200
Grand stellated 120-cell
grand stellated polydodecahedron (aspD)
Ortho solid 013-uniform polychoron p5p-t0.png {5/2,5,5/2}
CDel node 1.pngCDel 5.pngCDel rat.pngCDel d2.pngCDel node.pngCDel 5.pngCDel node.pngCDel 5.pngCDel rat.pngCDel d2.pngCDel node.png
120
{5/2,5}
Small stellated dodecahedron.png
720
{5/2}
Star polygon 5-2.svg
720
{5/2}
Star polygon 5-2.svg
120
{5,5/2}
Great dodecahedron.png
660
Great grand 120-cell
great grand polydodecahedron (gapD)
Ortho solid 011-uniform polychoron 53p-t0.png {5,5/2,3}
CDel node 1.pngCDel 5.pngCDel node.pngCDel 5.pngCDel rat.pngCDel d2.pngCDel node.pngCDel 3.pngCDel node.png
120
{5,5/2}
Great dodecahedron.png
720
{5}
Regular pentagon.svg
1200
{3}
Regular triangle.svg
120
{5/2,3}
Great stellated dodecahedron.png
76480
Great icosahedral 120-cell
great polyicosahedron (gpI)
Ortho solid 014-uniform polychoron 3p5-t0.png {3,5/2,5}
CDel node.pngCDel 5.pngCDel node.pngCDel 5.pngCDel rat.pngCDel d2.pngCDel node.pngCDel 3.pngCDel node 1.png
120
{3,5/2}
Great icosahedron.png
1200
{3}
Regular triangle.svg
720
{5}
Regular pentagon.svg
120
{5/2,5}
Small stellated dodecahedron.png
76480
Grand 600-cell
grand polytetrahedron (apT)
Ortho solid 015-uniform polychoron 33p-t0.png {3,3,5/2}
CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 5.pngCDel rat.pngCDel d2.pngCDel node.png
600
{3,3}
Tetrahedron.png
1200
{3}
Regular triangle.svg
720
{5/2}
Star polygon 5-2.svg
120
{3,5/2}
Great icosahedron.png
1910
Great grand stellated 120-cell
great grand stellated polydodecahedron (gaspD)
Ortho solid 016-uniform polychoron p33-t0.png {5/2,3,3}
CDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 5.pngCDel rat.pngCDel d2.pngCDel node 1.png
120
{5/2,3}
Great stellated dodecahedron.png
720
{5/2}
Star polygon 5-2.svg
1200
{3}
Regular triangle.svg
600
{3,3}
Tetrahedron.png
1910

See also

Notes

Related Research Articles

<span class="mw-page-title-main">Kepler–Poinsot polyhedron</span> Any of 4 regular star polyhedra

In geometry, a Kepler–Poinsot polyhedron is any of four regular star polyhedra.

In elementary geometry, a polytope is a geometric object with flat sides (faces). Polytopes are the generalization of three-dimensional polyhedra to any number of dimensions. Polytopes may exist in any general number of dimensions n as an n-dimensional polytope or n-polytope. For example, a two-dimensional polygon is a 2-polytope and a three-dimensional polyhedron is a 3-polytope. In this context, "flat sides" means that the sides of a (k + 1)-polytope consist of k-polytopes that may have (k – 1)-polytopes in common.

<span class="mw-page-title-main">4-polytope</span> Four-dimensional geometric object with flat sides

In geometry, a 4-polytope is a four-dimensional polytope. It is a connected and closed figure, composed of lower-dimensional polytopal elements: vertices, edges, faces (polygons), and cells (polyhedra). Each face is shared by exactly two cells. The 4-polytopes were discovered by the Swiss mathematician Ludwig Schläfli before 1853.

<span class="mw-page-title-main">Stellation</span> Extending the elements of a polytope to form a new figure

In geometry, stellation is the process of extending a polygon in two dimensions, polyhedron in three dimensions, or, in general, a polytope in n dimensions to form a new figure. Starting with an original figure, the process extends specific elements such as its edges or face planes, usually in a symmetrical way, until they meet each other again to form the closed boundary of a new figure. The new figure is a stellation of the original. The word stellation comes from the Latin stellātus, "starred", which in turn comes from Latin stella, "star". Stellation is the reciprocal or dual process to faceting.

<span class="mw-page-title-main">Schläfli symbol</span> Notation that defines regular polytopes and tessellations

In geometry, the Schläfli symbol is a notation of the form that defines regular polytopes and tessellations.

<span class="mw-page-title-main">Regular polytope</span> Polytope with highest degree of symmetry

In mathematics, a regular polytope is a polytope whose symmetry group acts transitively on its flags, thus giving it the highest degree of symmetry. In particular, all its elements or j-faces — cells, faces and so on — are also transitive on the symmetries of the polytope, and are themselves regular polytopes of dimension jn.

<span class="mw-page-title-main">Vertex figure</span> Shape made by slicing off a corner of a polytope

In geometry, a vertex figure, broadly speaking, is the figure exposed when a corner of a polyhedron or polytope is sliced off.

<span class="mw-page-title-main">Uniform 4-polytope</span> Class of 4-dimensional polytopes

In geometry, a uniform 4-polytope is a 4-dimensional polytope which is vertex-transitive and whose cells are uniform polyhedra, and faces are regular polygons.

<span class="mw-page-title-main">Cantellated 120-cell</span> 4D geometry item

In four-dimensional geometry, a cantellated 120-cell is a convex uniform 4-polytope, being a cantellation of the regular 120-cell.

<span class="mw-page-title-main">Uniform polytope</span> Isogonal polytope with uniform facets

In geometry, a uniform polytope of dimension three or higher is a vertex-transitive polytope bounded by uniform facets. The uniform polytopes in two dimensions are the regular polygons.

In geometry, a star polyhedron is a polyhedron which has some repetitive quality of nonconvexity giving it a star-like visual quality.

<span class="mw-page-title-main">Great grand stellated 120-cell</span> Regular Schläfli-Hess 4-polytope with 600 vertices

In geometry, the great grand stellated 120-cell or great grand stellated polydodecahedron is a regular star 4-polytope with Schläfli symbol {5/2,3,3}, one of 10 regular Schläfli-Hess 4-polytopes. It is unique among the 10 for having 600 vertices, and has the same vertex arrangement as the regular convex 120-cell.

<span class="mw-page-title-main">Small stellated 120-cell</span>

In geometry, the small stellated 120-cell or stellated polydodecahedron is a regular star 4-polytope with Schläfli symbol {5/2,5,3}. It is one of 10 regular Schläfli-Hess polytopes.

<span class="mw-page-title-main">Icosahedral 120-cell</span>

In geometry, the icosahedral 120-cell, polyicosahedron, faceted 600-cell or icosaplex is a regular star 4-polytope with Schläfli symbol {3,5,5/2}. It is one of 10 regular Schläfli-Hess polytopes.

<span class="mw-page-title-main">Grand 120-cell</span>

In geometry, the grand 120-cell or grand polydodecahedron is a regular star 4-polytope with Schläfli symbol {5,3,5/2}. It is one of 10 regular Schläfli-Hess polytopes.

<span class="mw-page-title-main">Great grand 120-cell</span>

In geometry, the great grand 120-cell or great grand polydodecahedron is a regular star 4-polytope with Schläfli symbol {5,5/2,3}. It is one of 10 regular Schläfli-Hess polytopes.

<span class="mw-page-title-main">Great 120-cell</span>

In geometry, the great 120-cell or great polydodecahedron is a regular star 4-polytope with Schläfli symbol {5,5/2,5}. It is one of 10 regular Schläfli-Hess polytopes. It is one of the two such polytopes that is self-dual.

<span class="mw-page-title-main">Grand stellated 120-cell</span>

In geometry, the grand stellated 120-cell or grand stellated polydodecahedron is a regular star 4-polytope with Schläfli symbol {5/2,5,5/2}. It is one of 10 regular Schläfli-Hess polytopes. It is also one of two such polytopes that is self-dual.

In geometry, a pentagonal polytope is a regular polytope in n dimensions constructed from the Hn Coxeter group. The family was named by H. S. M. Coxeter, because the two-dimensional pentagonal polytope is a pentagon. It can be named by its Schläfli symbol as {5, 3n − 2} (dodecahedral) or {3n − 2, 5} (icosahedral).

References

Citations

  1. Coxeter 1973, p. 141, §7-x. Historical remarks.
  2. Coxeter 1973, pp. 292–293, Table I(ii): The sixteen regular polytopes {p,q,r} in four dimensions: [An invaluable table providing all 20 metrics of each 4-polytope in edge length units. They must be algebraically converted to compare polytopes of unit radius.]
  3. Conway, Burgiel & Goodman-Strauss 2008 , Ch. 26. Higher Still
  4. "Convex and abstract polytopes", Programme and abstracts, MIT, 2005
  5. Johnson, Norman W. (2018). "§ 11.5 Spherical Coxeter groups". Geometries and Transformations. Cambridge University Press. pp. 246–. ISBN   978-1-107-10340-5.
  6. Richeson, David S. (2012). "23. Henri Poincaré and the Ascendancy of Topology". Euler's Gem: The Polyhedron Formula and the Birth of Topology. Princeton University Press. pp. 256–. ISBN   978-0-691-15457-2.
  7. Coxeter 1973 , § 1.8 Configurations
  8. Coxeter, Complex Regular Polytopes, p.117
  9. Conway, Burgiel & Goodman-Strauss 2008 , p. 406, Fig 26.2
  10. Coxeter, Star polytopes and the Schläfli function f{α,β,γ) p. 122 2. The Schläfli-Hess polytopes

Bibliography