Remote Automated Weather Station

Last updated
Remote Automatic Weather Station (RAWS) with TriLeg tower at Ruby Lake Ruby Lake National Wildlife Refuge, Elko County, Nevada 2012-06-26 16 00 00 Ruby Lake Remote Automated Weather Station (RAWS) at Ruby Lake National Wildlife Refuge in Elko County, Nevada.jpg
Remote Automatic Weather Station (RAWS) with TriLeg tower at Ruby Lake Ruby Lake National Wildlife Refuge, Elko County, Nevada

The Remote Automatic Weather Stations (RAWS) system is a network of automated weather stations run by the U.S. Forest Service (USFS) and Bureau of Land Management (BLM) and monitored by the National Interagency Fire Center (NIFC), mainly to observe potential wildfire conditions.

Unlike the automated airport weather stations which are located at significant airports, RAWS stations are often located in remote areas, particularly in national forests. Because of this, they usually are not connected to the electrical grid, but rather have their own solar panels, and a battery to store power for overnight reporting. Some instead run on a generator. In both cases, data important to operating the station itself, such as battery voltage or fuel level, is often included in the hourly reports.

Also because of the remote locations, most communicate with a modem via telephone, or via a VSAT connection to a GOES satellite.

In this regard, they are similar to mesonets and may be mesonets if the distance between stations (spatial resolution) is sufficiently dense. [1] They often lack the consistently high-quality data needed for use in numerical weather prediction and climatology, however. [2] Road Weather Information System (RWIS) may likewise be self-powered and located in remote areas.

Portable RAWS

There are times when a portable weather station is required, such as planned ignitions, wildfires, and other projects where there is a need to collect and share weather information. [3] Portable stations may also be referred to as "quick deploy" or QD, and this should be indicated within the name of the station to allow proper interpretation of the collected data.

  1. Zachariassen, John; K. Zeller; N. Nikolov; T. McClelland (2003). A Review of the Forest Service Remote Automated Weather Station (RAWS) Network (PDF). Gen. Tech. Rep. Vol. RMRS-GTR-119. Ft. Collins, CO: Rocky Mountain Research Station, National Forest Service, U.S.D.A.
  2. Hall, Beth L.; T. J. Brown (2007-01-16). "Comparison of weather data from the Remote Automated Weather Station network and the North American Regional Reanalysis". 14th Symposium on Meteorological Observation and Instrumentation. San Antonio, TX: American Meteorological Society.
  3. Henry, Bryan. "FIRE WEATHER STATION STANDARDS & GUIDELINES". National Interagency Fire Center. Retrieved 19 February 2014.


Related Research Articles

<span class="mw-page-title-main">Weather station</span> Facility for atmospheric research and prediction

A weather station is a facility, either on land or sea, with instruments and equipment for measuring atmospheric conditions to provide information for weather forecasts and to study the weather and climate. The measurements taken include temperature, atmospheric pressure, humidity, wind speed, wind direction, and precipitation amounts. Wind measurements are taken with as few other obstructions as possible, while temperature and humidity measurements are kept free from direct solar radiation, or insolation. Manual observations are taken at least once daily, while automated measurements are taken at least once an hour. Weather conditions out at sea are taken by ships and buoys, which measure slightly different meteorological quantities such as sea surface temperature (SST), wave height, and wave period. Drifting weather buoys outnumber their moored versions by a significant amount.

<span class="mw-page-title-main">National Weather Service</span> U.S. forecasting agency of the National Oceanic and Atmospheric Administration

The National Weather Service (NWS) is an agency of the United States federal government that is tasked with providing weather forecasts, warnings of hazardous weather, and other weather-related products to organizations and the public for the purposes of protection, safety, and general information. It is a part of the National Oceanic and Atmospheric Administration (NOAA) branch of the Department of Commerce, and is headquartered in Silver Spring, Maryland, within the Washington metropolitan area. The agency was known as the United States Weather Bureau from 1890 until it adopted its current name in 1970.

An automatic transmission system (ATS) is an automated system designed to keep a broadcast radio or television station's transmitter and antenna system running without direct human oversight or attention for long periods. Such systems are occasionally referred to as automated transmission systems to avoid confusion with the automatic transmission of an automobile.

<span class="mw-page-title-main">Flight service station</span>

A flight service station (FSS) is an air traffic facility that provides information and services to aircraft pilots before, during, and after flights, but unlike air traffic control (ATC), is not responsible for giving instructions or clearances or providing separation. They do, however, relay clearances from ATC for departure or approaches. The people who communicate with pilots from an FSS are referred to as flight service specialists.

<span class="mw-page-title-main">Automatic weather station</span> Meteorological instrument

An automatic weather station (AWS) is an automated version of the traditional weather station, either to save human labor or to enable measurements from remote areas. An AWS will typically consist of a weather-proof enclosure containing the data logger, rechargeable battery, telemetry (optional) and the meteorological sensors with an attached solar panel or wind turbine and mounted upon a mast. The specific configuration may vary due to the purpose of the system. The system may report in near real time via the Argos System, LoRa and the Global Telecommunications System, or save the data for later recovery.

<span class="mw-page-title-main">Wildfire suppression</span> Firefighting tactics used to suppress wildfires

Wildfire suppression is a range of firefighting tactics used to suppress wildfires. Firefighting efforts depend on many factors such as the available fuel, the local atmospheric conditions, the features of the terrain, and the size of the wildfire. Because of this wildfire suppression in wild land areas usually requires different techniques, equipment, and training from the more familiar structure fire fighting found in populated areas. Working in conjunction with specially designed aerial firefighting aircraft, fire engines, tools, firefighting foams, fire retardants, and using various firefighting techniques, wildfire-trained crews work to suppress flames, construct fire lines, and extinguish flames and areas of heat in order to protect resources and natural wilderness. Wildfire suppression also addresses the issues of the wildland–urban interface, where populated areas border with wild land areas.

<span class="mw-page-title-main">Weather buoy</span> Floating instrument package that collects weather and ocean data

Weather buoys are instruments which collect weather and ocean data within the world's oceans, as well as aid during emergency response to chemical spills, legal proceedings, and engineering design. Moored buoys have been in use since 1951, while drifting buoys have been used since 1979. Moored buoys are connected with the ocean bottom using either chains, nylon, or buoyant polypropylene. With the decline of the weather ship, they have taken a more primary role in measuring conditions over the open seas since the 1970s. During the 1980s and 1990s, a network of buoys in the central and eastern tropical Pacific Ocean helped study the El Niño-Southern Oscillation. Moored weather buoys range from 1.5–12 metres (5–40 ft) in diameter, while drifting buoys are smaller, with diameters of 30–40 centimetres (12–16 in). Drifting buoys are the dominant form of weather buoy in sheer number, with 1250 located worldwide. Wind data from buoys has smaller error than that from ships. There are differences in the values of sea surface temperature measurements between the two platforms as well, relating to the depth of the measurement and whether or not the water is heated by the ship which measures the quantity.

<span class="mw-page-title-main">Citizen Weather Observer Program</span> Network of weather stations based in the United States

The Citizen Weather Observer Program (CWOP) is a network of privately owned electronic weather stations concentrated in the United States but also located in over 150 countries. Network participation allows volunteers with computerized weather stations to send automated surface weather observations to the National Weather Service (NWS) by way of the Meteorological Assimilation Data Ingest System (MADIS). This data is then used by the Rapid Refresh (RAP) forecast model to produce short term forecasts of conditions across the contiguous United States. Observations are also redistributed to the public.

<span class="mw-page-title-main">Mesonet</span> Network of weather and environment monitoring stations

In meteorology and climatology, a mesonet, portmanteau of mesoscale network, is a network of automated weather and, often also including environmental monitoring stations, designed to observe mesoscale meteorological phenomena and/or microclimates.

<span class="mw-page-title-main">Meteorological instrumentation</span> Measuring device used in meteorology

Meteorological instruments, including meteorological sensors, are the equipment used to find the state of the atmosphere at a given time. Each science has its own unique sets of laboratory equipment. Meteorology, however, is a science which does not use much laboratory equipment but relies more on on-site observation and remote sensing equipment. In science, an observation, or observable, is an abstract idea that can be measured and for which data can be taken. Rain was one of the first quantities to be measured historically. Two other accurately measured weather-related variables are wind and humidity. Many attempts had been made prior to the 15th century to construct adequate equipment to measure atmospheric variables.

<span class="mw-page-title-main">Helitack</span> Helicopter used to transport firefighters to fire zones

Helitack crews are teams of wildland firefighters who are transported by helicopter to wildfires. Helicopters provide rapid transport, enabling helitack crews to quickly respond and assess a wildfire situation. Helitack crews may land near a wildfire or, if equipped and trained, rappel from a hovering helicopter. Once on the ground, crews build firelines using hand tools, chainsaws, and other firefighting tools. They often remain overnight in remote locations. After they have completed their assignment, crew members may pack up to 120 pounds of equipment over difficult terrain to reach a pick-up point. Rappellers often prepare helispots that provide better access to a fire. Helicopter crew members may also perform other duties such as tree falling, firing operations, and managing helibases.

<span class="mw-page-title-main">Automated airport weather station</span> Automated sensor suites

Airport weather stations are automated sensor suites which are designed to serve aviation and meteorological operations, weather forecasting and climatology. Automated airport weather stations have become part of the backbone of weather observing in the United States and Canada and are becoming increasingly more prevalent worldwide due to their efficiency and cost-savings.

The Oklahoma Mesonet is a network of environmental monitoring stations designed to measure the environment at the size and duration of mesoscale weather events. The phrase "mesonet" is a portmanteau of the words mesoscale and network.

Automated Weather Source (AWS) was a partnership and later a corporation founded in 1992 by James Michael "Mike" Bailey and Charles "Topper" Shutt of Montgomery County, Maryland, whose purpose was to create a network of weather stations located at public schools and recreational facilities throughout the Mid-Atlantic region of the United States.

<span class="mw-page-title-main">Regional Meteorological Centre, Chennai</span> Research institute in Chennai

Regional Meteorological Centre, Chennai is one of the six regional meteorological centres (RMCs) of the India Meteorological Department (IMD) and is responsible for the weather-related activities of the southern Indian peninsula comprising the states of Andhra Pradesh, Telangana, Karnataka, Kerala, Tamil Nadu and the union territories of Andaman and Nicobar, Lakshadweep Islands and Puducherry. The other regional centres are located at Kolkata, Guwahati, Mumbai, Nagpur and New Delhi.

<span class="mw-page-title-main">Automated Meteorological Data Acquisition System</span>

AMeDAS, commonly known in Japanese as "アメダス" (amedasu), is a high-resolution surface observation network developed by the Japan Meteorological Agency (JMA) used for gathering regional weather data and verifying forecast performance. The system began operating on 1 November 1974, and currently comprises 1,300 stations throughout Japan, with an average separation of 17 km (11 mi).

<span class="mw-page-title-main">Road Weather Information System</span> Network of weather stations installed along roads

A Road Weather Information System (RWIS) comprises automatic weather stations (AWS) in the field, a communication system for data transfer, and central systems to collect field data from numerous ESS. These stations measure real-time atmospheric parameters, pavement conditions, water level conditions, visibility, and sometimes other variables. Central RWIS hardware and software are used to process observations from ESS to develop nowcasts or forecasts, and to display or disseminate road weather information in a format that can be easily interpreted by a manager. RWIS data are used by road operators and maintainers to support decision making. Real-time RWIS data is also used by Automated Warning Systems (AWS). The spatial and temporal resolution of a station network can be that of a mesonet or sometimes a constituent network in a network of station networks comprising a mesonet. The data is often considered proprietary although it is typically ingested into the major numerical weather prediction models.

Meteorological Service Singapore (MSS) is the national meteorological service of Singapore. It is responsible for gathering and recording weather data across the country, issuing weather forecasts, and performing research into Singapore's weather and climate. It is a division of the National Environment Agency, a statutory board under the Ministry of Sustainability and the Environment.