Research Moored Array for African-Asian-Australian Monsoon Analysis and Prediction

Last updated

The Research Moored Array for African-Asian-Australian Monsoon Analysis and Prediction (RAMA) is a system of moored observation buoys in the Indian Ocean that collects meteorological and oceanographic data. The data collected by RAMA will greatly enhance the ability of scientists to understand climatic events and predict monsoon events. Climatic and oceanic events in the Indian Ocean affect weather and climate throughout the rest of the world (such as El Niño, hurricanes, and United States weather), so RAMA will support weather forecasting and climate research worldwide. Although widely supported internationally, the system has only been partially implemented (as of 2012) due to pirate activity off the coast of Somalia. [1]

Contents

Aims and objectives

Although the data coverage for the Indian Ocean has been poor, it has not been non-existent. Satellites have been taking measurements, but those measurements require validation in situ. Some nations, like India and Australia, operate national ocean observing programs. Researchers have mounted observing equipment on ships of opportunity to take measurements. Also, the Argo float system has taken data in the Indian Ocean. What RAMA will contribute is large scale, long term data with high temporal resolution. High temporal resolution will allow rapid changes to be captured. With the installation of RAMA, the Indian Ocean will have a basin-wide observing system similar to TAO/TRITON in the Pacific Ocean and PIRATA in the tropical Atlantic. RAMA will complete the worldwide network of tropical ocean observing buoys, which will help with modeling and forecasting. [2] [3] The data RAMA collects will facilitate the study of "ocean-atmosphere interactions, mixed layer dynamics, and ocean circulation related to the monsoon on intraseasonal to decadal time scales."

Scale

When complete RAMA will have 46 moored buoys, each of which is designed to be serviced annually. 38 are to be surface buoys and eight are subsurface ones. There are four types of moored buoys:

Data obtained from the buoys is beamed to the Global Telecommunications System using the Service Argos Satellite Relay System. From there, it is distributed to agencies that require that information, such as weather centers. All of the data is free to access. [3]

Progress

By the end of 2008, 22 of the 46 buoys were in position, and the system was expected to be fully implemented by 2012. [3] However, pirate activity off the coast of Somalia has jeopardized the completion of the project. Shipping insurers require special insurance to enter the piracy regions, which cover a large portion of the Indian Ocean. As of July 2011, 30 of the 46 moored buoys were established, but "13 of the remaining 16 are in the insurer's exclusion zone". [4] Some buoys have even been shot at. While satellite data can still give enough information to make monsoon predictions, climate system studies will be affected by the gap in information. [4]

Data provided

Despite the system being incomplete, it has already begun providing valuable data. Farmers in Australia were able to use the data provided by RAMA to prepare for a bad growing season in 2008. It has also helped correct improper satellite measurements of surface heat flux. [3]

Related Research Articles

<span class="mw-page-title-main">Weather station</span> Facility for atmospheric research and prediction

A weather station is a facility, either on land or sea, with instruments and equipment for measuring atmospheric conditions to provide information for weather forecasts and to study the weather and climate. The measurements taken include temperature, atmospheric pressure, humidity, wind speed, wind direction, and precipitation amounts. Wind measurements are taken with as few other obstructions as possible, while temperature and humidity measurements are kept free from direct solar radiation, or insolation. Manual observations are taken at least once daily, while automated measurements are taken at least once an hour. Weather conditions out at sea are taken by ships and buoys, which measure slightly different meteorological quantities such as sea surface temperature (SST), wave height, and wave period. Drifting weather buoys outnumber their moored versions by a significant amount.

<span class="mw-page-title-main">Survey vessel</span> Type of research vessel

A survey vessel is any type of ship or boat that is used for underwater surveys, usually to collect data for mapping or planning underwater construction or mineral extraction. It is a type of research vessel, and may be designed for the purpose, modified for the purpose or temporarily put into the service as a vessel of opportunity, and may be crewed, remotely operated, or autonomous. The size and equipment vary to suit the task and availability.

<span class="mw-page-title-main">Deep-ocean Assessment and Reporting of Tsunamis</span> Component of an enhanced tsunami warning system

Deep-ocean Assessment and Reporting of Tsunamis (DART) is a component of an enhanced tsunami warning system.

<span class="mw-page-title-main">National Institute of Ocean Technology</span> Scientific organization in Tamil Nadu

The National Institute of Ocean Technology (NIOT) was established in November 1993 as an autonomous society under the Ministry of Earth Sciences in India. NIOT is managed by a Governing Council and is headed by a director. The institute is based in Chennai. The major aim of starting NIOT was to develop reliable indigenous technologies to solve various engineering problems associated with harvesting of non-living and living resources in India's exclusive economic zone, which is about two-thirds of the land area of India.

<span class="mw-page-title-main">Mixed layer</span> Layer in which active turbulence has homogenized some range of depths

The oceanic or limnological mixed layer is a layer in which active turbulence has homogenized some range of depths. The surface mixed layer is a layer where this turbulence is generated by winds, surface heat fluxes, or processes such as evaporation or sea ice formation which result in an increase in salinity. The atmospheric mixed layer is a zone having nearly constant potential temperature and specific humidity with height. The depth of the atmospheric mixed layer is known as the mixing height. Turbulence typically plays a role in the formation of fluid mixed layers.

<span class="mw-page-title-main">National Data Buoy Center</span>

The National Data Buoy Center (NDBC) is a part of the National Oceanic and Atmospheric Administration's (NOAA) National Weather Service (NWS). NDBC designs, develops, operates, and maintains a network of data collecting buoys and coastal stations. The NDBC is located in southern Mississippi as a tenant at the John C. Stennis Space Center, a National Aeronautics and Space Administration (NASA) facility.

The World Ocean Circulation Experiment (WOCE) was a component of the international World Climate Research Program, and aimed to establish the role of the World Ocean in the Earth's climate system. WOCE's field phase ran between 1990 and 1998, and was followed by an analysis and modeling phase that ran until 2002. When the WOCE was conceived, there were three main motivations for its creation. The first of these is the inadequate coverage of the World Ocean, specifically in the Southern Hemisphere. Data was also much more sparse during the winter months than the summer months, and there was—and still to some extent—a critical need for data covering all seasons. Secondly, the data that did exist was not initially collected for studying ocean circulation and was not well suited for model comparison. Lastly, there were concerns involving the accuracy and reliability of some measurements. The WOCE was meant to address these problems by providing new data collected in ways designed to "meet the needs of global circulation models for climate prediction."

<span class="mw-page-title-main">Weather buoy</span> Floating instrument package which collects weather and ocean data on the worlds oceans

Weather buoys are instruments which collect weather and ocean data within the world's oceans, as well as aid during emergency response to chemical spills, legal proceedings, and engineering design. Moored buoys have been in use since 1951, while drifting buoys have been used since 1979. Moored buoys are connected with the ocean bottom using either chains, nylon, or buoyant polypropylene. With the decline of the weather ship, they have taken a more primary role in measuring conditions over the open seas since the 1970s. During the 1980s and 1990s, a network of buoys in the central and eastern tropical Pacific Ocean helped study the El Niño-Southern Oscillation. Moored weather buoys range from 1.5–12 metres (5–40 ft) in diameter, while drifting buoys are smaller, with diameters of 30–40 centimetres (12–16 in). Drifting buoys are the dominant form of weather buoy in sheer number, with 1250 located worldwide. Wind data from buoys has smaller error than that from ships. There are differences in the values of sea surface temperature measurements between the two platforms as well, relating to the depth of the measurement and whether or not the water is heated by the ship which measures the quantity.

A mooring in oceanography is a collection of devices connected to a wire and anchored on the sea floor. It is the Eulerian way of measuring ocean currents, since a mooring is stationary at a fixed location. In contrast to that, the Lagrangian way measures the motion of an oceanographic drifter, the Lagrangian drifter.

<span class="mw-page-title-main">Ocean heat content</span> Thermal energy stored in ocean water

Ocean heat content (OHC) is the energy absorbed and stored by oceans. Between 1971 and 2018, the rise in OHC accounts for over 90% of Earth’s excess thermal energy from global heating. The main driver of this OHC increase was most likely anthropogenic forcing via rising greenhouse gas emissions. By 2020, about one third of the added energy had propagated to depths below 700 meters. Ocean heat content and sea level rise are important indicators of climate change. The term is used in oceanography and climatology.

<span class="mw-page-title-main">Ocean Observatories Initiative</span> Network of ocean observatories

The Ocean Observatories Initiative (OOI) is a National Science Foundation (NSF) Major Research Facility composed of a network of science-driven ocean observing platforms and sensors in the Atlantic and Pacific Oceans. This networked infrastructure measures physical, chemical, geological, and biological variables from the seafloor to the sea surface and overlying atmosphere, providing an integrated data collection system on coastal, regional and global scales. OOI's goal is to deliver data and data products for a 25-year-plus time period, enabling a better understanding of ocean environments and critical ocean issues.

<span class="mw-page-title-main">Drifter (floating device)</span> Oceanographic instrument package floating freely on the surface, transported by currents

A drifter is an oceanographic device floating on the surface to investigate ocean currents by tracking location. They can also measure other parameters like sea surface temperature, salinity, barometric pressure, and wave height. Modern drifters are typically tracked by satellite, often GPS. They are sometimes called Lagrangian drifters since the location of the measurements they make moves with the flow. A major user of drifters is NOAA's Global Drifter Program.

The following are considered ocean essential climate variables (ECVs) by the Ocean Observations Panel for Climate (OOPC) that are currently feasible with current observational systems.

The Hawaii Ocean Time-series (HOT) program is a long-term oceanographic study based at the University of Hawaii at Manoa. In 2015, the American Society for Microbiology designated the HOT Program's field site Station ALOHA a "Milestone in Microbiology", for playing "a key role in defining the discipline of microbial oceanography and educating the public about the vital role of marine microbes in global ecosystems."

<span class="mw-page-title-main">Ocean temperature</span> Physical quantity that expresses hot and cold in ocean water

The ocean temperature varies by depth, geographical location and season. Both the temperature and salinity of ocean water differs. Warm surface water is generally saltier than the cooler deep or polar waters; in polar regions, the upper layers of ocean water are cold and fresh. Deep ocean water is cold, salty water found deep below the surface of Earth's oceans. This water has a very uniform temperature, around 0-3 °C. The ocean temperature also depends on the amount of solar radiation falling on its surface. In the tropics, with the Sun nearly overhead, the temperature of the surface layers can rise to over 30 °C (86 °F) while near the poles the temperature in equilibrium with the sea ice is about −2 °C (28 °F). There is a continuous circulation of water in the oceans. Thermohaline circulation (THC) is a part of the large-scale ocean circulation that is driven by global density gradients created by surface heat and freshwater fluxes. Warm surface currents cool as they move away from the tropics, and the water becomes denser and sinks. The cold water moves back towards the equator as a deep sea current, driven by changes in the temperature and density of the water, before eventually welling up again towards the surface.

<span class="mw-page-title-main">Barrier layer (oceanography)</span> Layer of water separating the well-mixed surface layer from the thermocline

The Barrier layer in the ocean is a layer of water separating the well-mixed surface layer from the thermocline.

The Tropical Atmosphere Ocean (TAO) project is a major international effort that instrumented the entire tropical Pacific Ocean with approximately 70 deep ocean moorings. The development of the TAO array in 1985 was motivated by the 1982-1983 El Niño event and ultimately designed for the study of year-to-year climate variations related to El Niño and the Southern Oscillation (ENSO). Led by the TAO Project Office of the Pacific Marine Environmental Laboratory (PMEL), the full array of 70 moorings was completed in 1994.

<span class="mw-page-title-main">Prediction and Research Moored Array in the Atlantic</span> System of moored observation buoys

The Prediction and Research Moored Array in the Atlantic (PIRATA) is a system of moored observation buoys in the tropical Atlantic Ocean which collect meteorological and oceanographic data. The data collected by the PIRATA array helps scientists to better understand climatic events in the Tropical Atlantic and to improve weather forecasting and climate research worldwide. Climatic and oceanic events in the tropical Atlantic, such as the Tropical Atlantic SST Dipole affect rainfall and climate in both West Africa and Northeast Brazil. The northern tropical Atlantic is also a major formation area for hurricanes affecting the West Indies and the United States. Alongside the RAMA array in the Indian Ocean and the TAO/TRITON network in the Pacific Ocean, PIRATA forms part of the worldwide system of tropical ocean observing buoys.

<span class="mw-page-title-main">Float (oceanographic instrument platform)</span> Oceanographic instrument platform used for making subsurface measurements in the ocean

A float is an oceanographic instrument platform used for making subsurface measurements in the ocean without the need for a ship, propeller, or a person operating it. Floats measure the physical and chemical aspects of the ocean in detail, such as measuring the direction and speed of water or the temperature and salinity. A float will descend to a predetermined depth where it will be neutrally buoyant. Once a certain amount of time has passed, most floats will rise back to the surface by increasing its buoyancy so it can transmit the data it collected to a satellite. A float can collect data while it is neutrally buoyant or moving through the water column. Often, floats are treated as disposable, as the expense of recovering them from remote areas of the ocean is prohibitive; when the batteries fail, a float ceases to function, and drifts at depth until it runs aground or floods and sinks. In other cases, floats are deployed for a short time and recovered.

<span class="mw-page-title-main">Global Drifter Program</span> Program measuring ocean currents, temperatures and atmospheric pressure using drifters

The Global Drifter Program (GDP) was conceived by Prof. Peter Niiler, with the objective of collecting measurements of surface ocean currents, sea surface temperature and sea-level atmospheric pressure using drifters. It is the principal component of the Global Surface Drifting Buoy Array, a branch of NOAA's Global Ocean Observations and a scientific project of the Data Buoy Cooperation Panel (DBCP). The project originated in February 1979 as part of the TOGA/Equatorial Pacific Ocean Circulation Experiment (EPOCS) and the first large-scale deployment of drifters was in 1988 with the goal of mapping the tropical Pacific Ocean's surface circulation. The current goal of the project is to use 1250 satellite-tracked surface drifting buoys to make accurate and globally dense in-situ observations of mixed layer currents, sea surface temperature, atmospheric pressure, winds and salinity, and to create a system to process the data. Horizontal transports in the oceanic mixed layer measured by the GDP are relevant to biological and chemical processes as well as physical ones.

References

  1. Y.Mallikarjun (2012-01-20). "Pirates keep ocean researchers at bay". The Hindu . Retrieved 8 February 2013.
  2. Rick Cole (25 March 2013). "RDSEA Reports:RAMA Done, PIRATA Next". MarineLink.com. Retrieved 4 July 2013.
  3. 1 2 3 4 5 M.J McPhaden; et al. (April 2009). "Research Moored Array for African-Asian-Australian Monsoon Analysis and Prediction" (PDF). American Meteorological Society . Retrieved 27 November 2012.
  4. 1 2 Nicola Jones (2011-07-07). "Pirates scupper monsoon research". Nature . doi:10.1038/news.2011.402 . Retrieved 27 November 2012.