Rock cycle

Last updated
Diagram of the rock cycle. Legend:
1 = magma;
2 = crystallization (freezing of rock);
3 = igneous rocks;
4 = erosion;
5 = sedimentation;
6 = sediments & sedimentary rocks;
7 = tectonic burial and metamorphism;
8 = metamorphic rocks;
9 = melting. Rockcycle.jpg
Diagram of the rock cycle. Legend:
1 = magma;
2 = crystallization (freezing of rock);
3 = igneous rocks;
4 = erosion;
5 = sedimentation;
6 = sediments & sedimentary rocks;
7 = tectonic burial and metamorphism;
8 = metamorphic rocks;
9 = melting.
The rock cycle and plate tectonics Rock cycle nps.PNG
The rock cycle and plate tectonics
This diamond is a mineral from within an igneous or metamorphic rock that formed at high temperature and pressure Rough diamond.jpg
This diamond is a mineral from within an igneous or metamorphic rock that formed at high temperature and pressure

The rock cycle is a basic concept in geology that describes transitions through geologic time among the three main rock types: sedimentary, metamorphic, and igneous. Each rock type is altered when it is forced out of its equilibrium conditions. For example, an igneous rock such as basalt may break down and dissolve when exposed to the atmosphere, or melt as it is subducted under a continent. Due to the driving forces of the rock cycle, plate tectonics and the water cycle, rocks do not remain in equilibrium and change as they encounter new environments. The rock cycle explains how the three rock types are related to each other, and how processes change from one type to another over time. This cyclical aspect makes rock change a geologic cycle and, on planets containing life, a biogeochemical cycle.

Contents

Structures of Igneous Rock. Legend: A = magma chamber (batholith); B = dyke/dike; C = laccolith; D = pegmatite; E = sill; F = stratovolcano; processes: 1 = newer intrusion cutting through older one; 2 = xenolith or roof pendant; 3 = contact metamorphism; 4 = uplift due to laccolith emplacement. Igneous structures.jpg
Structures of Igneous Rock. Legend: A = magma chamber (batholith); B = dyke/dike; C = laccolith; D = pegmatite; E = sill; F = stratovolcano; processes: 1 = newer intrusion cutting through older one; 2 = xenolith or roof pendant; 3 = contact metamorphism; 4 = uplift due to laccolith emplacement.

Transition to igneous rock

When rocks are pushed deep under the Earth's surface, they may melt into magma. If the conditions no longer exist for the magma to stay in its liquid state, it cools and solidifies into an igneous rock. A rock that cools within the Earth is called intrusive or plutonic and cools very slowly, producing a coarse-grained texture such as the rock granite. As a result of volcanic activity, magma (which is called lava when it reaches Earth's surface) may cool very rapidly on the Earth's surface exposed to the atmosphere and are called extrusive or volcanic rocks. These rocks are fine-grained and sometimes cool so rapidly that no crystals can form and result in a natural glass, such as obsidian, however the most common fine-grained rock would be known as basalt. Any of the three main types of rocks (igneous, sedimentary, and metamorphic rocks) can melt into magma and cool into igneous rocks. [2]

Secondary changes

Epigenetic change (secondary processes occurring at low temperatures and low pressures) may be arranged under a number of headings, each of which is typical of a group of rocks or rock-forming minerals, though usually more than one of these alterations is in progress in the same rock. Silicification, the replacement of the minerals by crystalline or crypto-crystalline silica, is most common in felsic rocks, such as rhyolite, but is also found in serpentine, etc. Kaolinization is the decomposition of the feldspars, which are the most common minerals in igneous rocks, into kaolin (along with quartz and other clay minerals); it is best shown by granites and syenites. Serpentinization is the alteration of olivine to serpentine (with magnetite); it is typical of peridotites, but occurs in most of the mafic rocks. In uralitization, secondary hornblende replaces augite; chloritization is the alteration of augite (biotite or hornblende) to chlorite, and is seen in many diabases, diorites and greenstones. Epidotization occurs also in rocks of this group, and consists in the development of epidote from biotite, hornblende, augite or plagioclase feldspar. [3]

Transition to metamorphic rock

Rocks exposed to high temperatures and pressures can be changed physically or chemically to form a different rock, called metamorphic. Regional metamorphism refers to the effects on large masses of rocks over a wide area, typically associated with mountain building events within orogenic belts. These rocks commonly exhibit distinct bands of differing mineralogy and colors, called foliation. Another main type of metamorphism is caused when a body of rock comes into contact with an igneous intrusion that heats up this surrounding country rock. This contact metamorphism results in a rock that is altered and re-crystallized by the extreme heat of the magma and/or by the addition of fluids from the magma that add chemicals to the surrounding rock (metasomatism). Any pre-existing type of rock can be modified by the processes of metamorphism. [4] [5]

Transition to sedimentary rock

Rocks exposed to the atmosphere are variably unstable and subject to the processes of weathering and erosion. Weathering and erosion break the original rock down into smaller fragments and carry away dissolved material. This fragmented material accumulates and is buried by additional material. While an individual grain of sand is still a member of the class of rock it was formed from, a rock made up of such grains fused together is sedimentary. Sedimentary rocks can be formed from the lithification of these buried smaller fragments (clastic sedimentary rock), the accumulation and lithification of material generated by living organisms (biogenic sedimentary rock - fossils), or lithification of chemically precipitated material from a mineral bearing solution due to evaporation (precipitate sedimentary rock). Clastic rocks can be formed from fragments broken apart from larger rocks of any type, due to processes such as erosion or from organic material, like plant remains. Biogenic and precipitate rocks form from the deposition of minerals from chemicals dissolved from all other rock types.

Forces that drive the rock cycle

Plate tectonics

In 1967, J. Tuzo Wilson published an article in Nature describing the repeated opening and closing of ocean basins, in particular focusing on the current Atlantic Ocean area. This concept, a part of the plate tectonics revolution, became known as the Wilson cycle. The Wilson cycle has had profound effects on the modern interpretation of the rock cycle as plate tectonics became recognized as the driving force for the rock cycle.

Spreading ridges

At the mid-ocean divergent boundaries new magma is produced by mantle upwelling and a shallow melting zone. This juvenile basaltic magma is an early phase of the igneous portion of the cycle. As the tectonic plates on either side of the ridge move apart the new rock is carried away from the ridge, the interaction of heated circulating seawater through fractures starts the retrograde metamorphism of the new rock.

Subduction zones

The new basaltic oceanic crust eventually meets a subduction zone as it moves away from the spreading ridge. As this crust is pulled back into the mantle, the increasing pressure and temperature conditions cause a restructuring of the mineralogy of the rock, this metamorphism alters the rock to form eclogite. As the slab of basaltic crust and some included sediments are dragged deeper, water and other more volatile materials are driven off and rise into the overlying wedge of rock above the subduction zone, which is at a lower pressure. The lower pressure, high temperature, and now volatile rich material in this wedge melts and the resulting buoyant magma rises through the overlying rock to produce island arc or continental margin volcanism. This volcanism includes more silicic lavas the further from the edge of the island arc or continental margin, indicating a deeper source and a more differentiated magma.

At times some of the metamorphosed downgoing slab may be thrust up or obducted onto the continental margin. These blocks of mantle peridotite and the metamorphic eclogites are exposed as ophiolite complexes.

The newly erupted volcanic material is subject to rapid erosion depending on the climate conditions. These sediments accumulate within the basins on either side of an island arc. As the sediments become more deeply buried lithification begins and sedimentary rock results.

Continental collision

On the closing phase of the classic Wilson cycle, two continental or smaller terranes meet at a convergent zone. [6] As the two masses of continental crust meet, neither can be subducted as they are both low density silicic rock. As the two masses meet, tremendous compressional forces distort and modify the rocks involved. [7] The result is regional metamorphism within the interior of the ensuing orogeny or mountain building event. As the two masses are compressed, folded and faulted into a mountain range by the continental collision the whole suite of pre-existing igneous, volcanic, sedimentary and earlier metamorphic rock units are subjected to this new metamorphic event.

Accelerated erosion

The high mountain ranges produced by continental collisions are immediately subjected to the forces of erosion. [8] Erosion wears down the mountains and massive piles of sediment are developed in adjacent ocean margins, shallow seas, and as continental deposits. As these sediment piles are buried deeper they become lithified into sedimentary rock. The metamorphic, igneous, and sedimentary rocks of the mountains become the new piles of sediments in the adjoining basins and eventually become sedimentary rock.

An evolving process

The plate tectonics rock cycle is an evolutionary process. Magma generation, both in the spreading ridge environment and within the wedge above a subduction zone, favors the eruption of the more silicic and volatile rich fraction of the crustal or upper mantle material. [9] This lower density material tends to stay within the crust and not be subducted back into the mantle. [10] The magmatic aspects of plate tectonics tends to gradual segregation within or between the mantle and crust. As magma forms, the initial melt is composed of the more silicic phases that have a lower melting point. This leads to partial melting and further segregation of the lithosphere. In addition the silicic continental crust is relatively buoyant and is not usually subducted back into the mantle. So over time the continental masses grow larger and larger. [11]

The role of water

The presence of abundant water on Earth is of great importance for the rock cycle. Most obvious perhaps are the water driven processes of weathering and erosion. Water in the form of precipitation and acidic soil water and groundwater is quite effective at dissolving minerals and rocks, especially those igneous and metamorphic rocks and marine sedimentary rocks that are unstable under near surface and atmospheric conditions. The water carries away the ions dissolved in solution and the broken-down fragments that are the products of weathering. Running water carries vast amounts of sediment in rivers back to the ocean and inland basins. The accumulated and buried sediments are converted back into rock.

A less obvious role of water is in the metamorphism processes that occur in fresh seafloor volcanic rocks as seawater, sometimes heated, flows through the fractures and crevices in the rock. All of these processes, illustrated by serpentinization, are an important part of the destruction of volcanic rock. [12]

The role of water and other volatiles in the melting of existing crustal rock in the wedge above a subduction zone is a most important part of the cycle. Along with water, the presence of carbon dioxide and other carbon compounds from abundant marine limestone within the sediments atop the down going slab is another source of melt inducing volatiles. This involves the carbon cycle as a part of the overall rock cycle. [13]

See also

Related Research Articles

<span class="mw-page-title-main">Metamorphic rock</span> Rock that was subjected to heat and pressure

Metamorphic rocks arise from the transformation of existing rock to new types of rock in a process called metamorphism. The original rock (protolith) is subjected to temperatures greater than 150 to 200 °C and, often, elevated pressure of 100 megapascals (1,000 bar) or more, causing profound physical or chemical changes. During this process, the rock remains mostly in the solid state, but gradually recrystallizes to a new texture or mineral composition. The protolith may be an igneous, sedimentary, or existing metamorphic rock.

<span class="mw-page-title-main">Subduction</span> A geological process at convergent tectonic plate boundaries where one plate moves under the other

Subduction is a geological process in which the oceanic lithosphere and some continental lithosphere is recycled into the Earth's mantle at convergent boundaries. Where the oceanic lithosphere of a tectonic plate converges with the less dense lithosphere of a second plate, the heavier plate dives beneath the second plate and sinks into the mantle. A region where this process occurs is known as a subduction zone, and its surface expression is known as an arc-trench complex. The process of subduction has created most of the Earth's continental crust. Rates of subduction are typically measured in centimeters per year, with rates of convergence as high as 11 cm/year.

<span class="mw-page-title-main">Rock (geology)</span> Naturally occurring mineral aggregate

In geology, rock is any naturally occurring solid mass or aggregate of minerals or mineraloid matter. It is categorized by the minerals included, its chemical composition, and the way in which it is formed. Rocks form the Earth's outer solid layer, the crust, and most of its interior, except for the liquid outer core and pockets of magma in the asthenosphere. The study of rocks involves multiple subdisciplines of geology, including petrology and mineralogy. It may be limited to rocks found on Earth, or it may include planetary geology that studies the rocks of other celestial objects.

<span class="mw-page-title-main">Convergent boundary</span> Region of active deformation between colliding tectonic plates

A convergent boundary is an area on Earth where two or more lithospheric plates collide. One plate eventually slides beneath the other, a process known as subduction. The subduction zone can be defined by a plane where many earthquakes occur, called the Wadati–Benioff zone. These collisions happen on scales of millions to tens of millions of years and can lead to volcanism, earthquakes, orogenesis, destruction of lithosphere, and deformation. Convergent boundaries occur between oceanic-oceanic lithosphere, oceanic-continental lithosphere, and continental-continental lithosphere. The geologic features related to convergent boundaries vary depending on crust types.

<span class="mw-page-title-main">Andesite</span> Type of volcanic rock

Andesite is a volcanic rock of intermediate composition. In a general sense, it is the intermediate type between silica-poor basalt and silica-rich rhyolite. It is fine-grained (aphanitic) to porphyritic in texture, and is composed predominantly of sodium-rich plagioclase plus pyroxene or hornblende.

<span class="mw-page-title-main">Continental crust</span> Layer of rock that forms the continents and continental shelves

Continental crust is the layer of igneous, metamorphic, and sedimentary rocks that forms the geological continents and the areas of shallow seabed close to their shores, known as continental shelves. This layer is sometimes called sial because its bulk composition is richer in aluminium silicates (Al-Si) and has a lower density compared to the oceanic crust, called sima which is richer in magnesium silicate (Mg-Si) minerals. Changes in seismic wave velocities have shown that at a certain depth, there is a reasonably sharp contrast between the more felsic upper continental crust and the lower continental crust, which is more mafic in character.

<span class="mw-page-title-main">Oceanic crust</span> Uppermost layer of the oceanic portion of a tectonic plate

Oceanic crust is the uppermost layer of the oceanic portion of the tectonic plates. It is composed of the upper oceanic crust, with pillow lavas and a dike complex, and the lower oceanic crust, composed of troctolite, gabbro and ultramafic cumulates. The crust overlies the rigid uppermost layer of the mantle. The crust and the rigid upper mantle layer together constitute oceanic lithosphere.

<span class="mw-page-title-main">Volcanic arc</span> Chain of volcanoes formed above a subducting plate

A volcanic arc is a belt of volcanoes formed above a subducting oceanic tectonic plate, with the belt arranged in an arc shape as seen from above. Volcanic arcs typically parallel an oceanic trench, with the arc located further from the subducting plate than the trench. The oceanic plate is saturated with water, mostly in the form of hydrous minerals such as micas, amphiboles, and serpentines. As the oceanic plate is subducted, it is subjected to increasing pressure and temperature with increasing depth. The heat and pressure break down the hydrous minerals in the plate, releasing water into the overlying mantle. Volatiles such as water drastically lower the melting point of the mantle, causing some of the mantle to melt and form magma at depth under the overriding plate. The magma ascends to form an arc of volcanoes parallel to the subduction zone.

<span class="mw-page-title-main">Formation of rocks</span> Process of rock formations

Terrestrial rocks are formed by three main mechanisms:

<span class="mw-page-title-main">Continental collision</span> Phenomenon in which mountains can be produced on the boundaries of converging tectonic plates

In geology, continental collision is a phenomenon of plate tectonics that occurs at convergent boundaries. Continental collision is a variation on the fundamental process of subduction, whereby the subduction zone is destroyed, mountains produced, and two continents sutured together. Continental collision is only known to occur on Earth.

<span class="mw-page-title-main">Basement (geology)</span> Metamorphic or igneous rocks below a sedimentary platform or cover

In geology, basement and crystalline basement are crystalline rocks lying above the mantle and beneath all other rocks and sediments. They are sometimes exposed at the surface, but often they are buried under miles of rock and sediment. The basement rocks lie below a sedimentary platform or cover, or more generally any rock below sedimentary rocks or sedimentary basins that are metamorphic or igneous in origin. In the same way, the sediments or sedimentary rocks on top of the basement can be called a "cover" or "sedimentary cover".

<span class="mw-page-title-main">Geology of Hong Kong</span>

The geology of Hong Kong is dominated by igneous rocks formed during a major volcanic eruption period in the Mesozoic era. It made up 85% of Hong Kong's land surface and the remaining 15% are mostly sedimentary rocks located in the northeast New Territories. There are also a very small percentage of metamorphic rocks in the New Territories, formed by deformation of pre-existing sedimentary rocks (metamorphism).

<i>Earth Revealed: Introductory Geology</i> American TV series or program

Earth Revealed: Introductory Geology, originally titled Earth Revealed, is a 26-part video instructional series covering the processes and properties of the physical Earth, with particular attention given to the scientific theories underlying geological principles. The telecourse was produced by Intelecom and the Southern California Consortium, was funded by the Annenberg/CPB Project, and first aired on PBS in 1992 with the title Earth Revealed. All 26 episodes are hosted by Dr. James L. Sadd, professor of environmental science at Occidental College in Los Angeles, California.

This glossary of geology is a list of definitions of terms and concepts relevant to geology, its sub-disciplines, and related fields. For other terms related to the Earth sciences, see Glossary of geography terms.

Partial melting is the phenomenon that occurs when a rock is subjected to temperatures high enough to cause certain minerals to melt, but not all of them. Partial melting is an important part of the formation of all igneous rocks and some metamorphic rocks, as evidenced by a multitude of geochemical, geophysical and petrological studies.

<span class="mw-page-title-main">Igneous rock</span> Rock formed through the cooling and solidification of magma or lava

Igneous rock, or magmatic rock, is one of the three main rock types, the others being sedimentary and metamorphic. Igneous rocks are formed through the cooling and solidification of magma or lava.

Ultra-high-pressure metamorphism refers to metamorphic processes at pressures high enough to stabilize coesite, the high-pressure polymorph of SiO2. It is important because the processes that form and exhume ultra-high-pressure (UHP) metamorphic rocks may strongly affect plate tectonics, the composition and evolution of Earth's crust. The discovery of UHP metamorphic rocks in 1984 revolutionized our understanding of plate tectonics. Prior to 1984 there was little suspicion that continental rocks could reach such high pressures.

<span class="mw-page-title-main">Subduction zone metamorphism</span> Changes of rock due to pressure and heat near a subduction zone

A subduction zone is a region of the Earth's crust where one tectonic plate moves under another tectonic plate; oceanic crust gets recycled back into the mantle and continental crust gets produced by the formation of arc magmas. Arc magmas account for more than 20% of terrestrially produced magmas and are produced by the dehydration of minerals within the subducting slab as it descends into the mantle and are accreted onto the base of the overriding continental plate. Subduction zones host a unique variety of rock types formed by the high-pressure, low-temperature conditions a subducting slab encounters during its descent. The metamorphic conditions the slab passes through in this process generates and alters water bearing (hydrous) mineral phases, releasing water into the mantle. This water lowers the melting point of mantle rock, initiating melting. Understanding the timing and conditions in which these dehydration reactions occur, is key to interpreting mantle melting, volcanic arc magmatism, and the formation of continental crust.

A continental arc is a type of volcanic arc occurring as an "arc-shape" topographic high region along a continental margin. The continental arc is formed at an active continental margin where two tectonic plates meet, and where one plate has continental crust and the other oceanic crust along the line of plate convergence, and a subduction zone develops. The magmatism and petrogenesis of continental crust are complicated: in essence, continental arcs reflect a mixture of oceanic crust materials, mantle wedge and continental crust materials.

<span class="mw-page-title-main">Dharwar Craton</span> Part of the Indian Shield in south India

The Dharwar Craton is an Archean continental crust craton formed between 3.6-2.5 billion years ago (Ga), which is located in southern India and considered as the oldest part of the Indian peninsula.

References

  1. "The Rock Cycle". National Geographic. Education National Geographic. Retrieved 8 May 2023.
  2. Le Maitre, R. W.; Streckeisen, A.; Zanettin, B.; Le Bas, M. J.; Bonin, B.; Bateman, P. (January 2005). Igneous Rocks: A Classification and Glossary of Terms (2nd ed.). Cambridge, U.K.: Cambridge University Press. Bibcode:2005ircg.book.....L. ISBN   0521619483.
  3. Wikisource-logo.svg One or more of the preceding sentences incorporates text from a publication now in the public domain : Flett, John Smith (1911). "Petrology". In Chisholm, Hugh (ed.). Encyclopædia Britannica . Vol. 21 (11th ed.). Cambridge University Press. p. 331.
  4. Bucher, Kurt; Grapes, Rodney (27 June 2011). Petrogenesis of Metamorphic Rocks. Springer Science & Business Media. ISBN   978-3-540-74169-5 . Retrieved 8 May 2023.
  5. "Sedimentary Rocks". National Geographic. Education National Geographic. Retrieved 8 May 2023.
  6. Burke, Kevin; Dewey, John F (1974). "Hot Spots and Continental Break-up: Implications for Collisional Orogeny". Geology. 2 (2): 57–60. Bibcode:1974Geo.....2...57D. doi:10.1130/0091-7613(1974)2<57:HSACBI>2.0.CO;2 . Retrieved 8 May 2023.
  7. Burke, Kevin (30 May 2011). "Plate Tectonics, the Wilson Cycle, and Mantle Plumes: Geodynamics from the Top". Annual Review of Earth and Planetary Sciences. 39 (1): 1–29. Bibcode:2011AREPS..39....1B. doi: 10.1146/annurev-earth-040809-152521 . ISSN   0084-6597 . Retrieved 8 May 2023.
  8. Robl, J.; Hergarten, S.; Prasicek, G. (15 May 2020). "Glacial erosion promotes high mountains on thin crust". Earth and Planetary Science Letters. 538: 116196. Bibcode:2020E&PSL.53816196R. doi:10.1016/j.epsl.2020.116196. ISSN   0012-821X. S2CID   216238429 . Retrieved 8 May 2023.
  9. Wyllie, Peter J (August 1988). "Magma Genesis, Plate Tectonics, and Chemical Differentiation of the Earth" (PDF). Reviews of Geophysics. 26 (3): 370–404. Bibcode:1988RvGeo..26..370W. doi:10.1029/RG026i003p00370 . Retrieved 8 May 2023.
  10. Speight, James G (2015). Subsea and Deepwater Oil and Gas Science and Technology. Wyoming: Gulf Professional Publishing. pp. 45–70. ISBN   9781856175586 . Retrieved 8 May 2023.
  11. Vigneresse, Jean Louis; Barbey, Pierre; Cuney, Michel (1996). "Rheological Transitions During Partial Melting and Crystallization with Application to Felsic Magma Segregation and Transfer". Journal of Petrology. 37 (6): 1579–1600. doi: 10.1093/petrology/37.6.1579 .
  12. Joseph, Antony (2017). "Chapter 6 - Seafloor Hot Chimneys and Cold Seeps: Mysterious Life Around Them". Investigating Seafloors and Oceans: From Mud Volcanoes to Giant Squid. Amsterdam, Netherlands: Elsevier. pp. 307–375. doi:10.1016/B978-0-12-809357-3.00006-0. ISBN   9780128093573.
  13. "The Slow Carbon Cycle". earthobservatory.nasa.gov. 16 June 2011. Retrieved 8 May 2023.