SSM-N-9 Regulus II

Last updated
SSM-N-9 Regulus II
Graybackmissle.jpg
USS Grayback (SSG-574) preparing to launch a Regulus II missile
TypeCruise missile
Production history
Manufacturer Chance Vought
Produced1956
Specifications
Mass23,000 pounds (10,000 kg) [1]
Length57 feet 6 inches (17.53 m) [1]
Diameter50 inches (1.3 m) [1]
Wingspan20 feet 1 inch (6.12 m) [1]
Warhead W27 Thermonuclear weapon [1]
Detonation
mechanism
air burst or surface burst (air burst – fireball does not reach the ground, usually at least 10,000 feet in altitude, surface burst – fireball touches the ground, less than 10,000 feet in altitude)

Engine1x General Electric J79-GE-3 turbojet
1x Rocketdyne solid-fueled rocket [1]
15,600 lbf (69 kN) + 135,000 lbf (600 kN) [1]
Operational
range
1,000 nautical miles (1,852 km) [1]
Flight ceiling59,000 feet (18,000 m) [1]
Maximum speed M 2.0 [1]
Guidance
system
Inertial [1]
Launch
platform
SSG and SSGN class submarines, cruisers

The SSM-N-9 Regulus II cruise missile is a supersonic guided missile armed with a nuclear warhead, intended for launching from surface ships and submarines of the U.S. Navy (USN). [2]

Contents

History

The limitations of the Regulus I were well known by the time it entered service in 1955, so the Navy issued a specification for a surface-launched supersonic shipborne cruise missile, equipped to carry a nuclear warhead, that had greater range, accuracy and resistance to countermeasures.

Development of the Regulus II was well under way when the program was canceled in favor of the UGM-27 Polaris SLBM (Submarine-Launched Ballistic Missile) system, which gave unprecedented accuracy as well as allowing the launch submarine to remain submerged and covert. Prototype and initial production missiles were later converted to KD2U-1 supersonic target drones for the US Navy and the U.S. Air Force, which used the KD2U-1 during tests of the Boeing IM-99/CIM-10 Bomarc SAM (Surface to Air Missile). [2]

The SSM-N-9a Regulus II was redesignated as the RGM-15A in June 1963, nearly five years after the missile program had been terminated. At the same time the KD2U-1 target drone was redesignated as the MQM-15A. Some targets equipped with landing gear were redesignated as GQM-15As. [1]

Design and development

Regulus II test launch in 1957. The swept-forward Ferri-style intake can be seen. SSM-N-9 Regulus II missile launch c1957.jpg
Regulus II test launch in 1957. The swept-forward Ferri-style intake can be seen.

The major drawback of the original Regulus was the use of radio-command guidance, which required a constant radio link with the launch ship / submarine that was relatively easy to interfere with. The earlier missile also suffered from restricted range which required the launch ship to launch the missile close to the target and remain exposed until the missile hit the target. To alleviate these drawbacks, the Regulus II was designed with an inertial navigation system, which required no further input from the launch ship / boat after launch, and a greater range through improved aerodynamics, larger fuel capacity, and a lower specific fuel consumption from its jet engine. [2]

Prototype missiles were built, designated XRSSM-N-9 Regulus II, with retractable landing gear, to allow multiple launches, and Wright J65-W-6 engines and Aerojet General booster, which restricted them to subsonic flight. The first flight of the XRSSM-N-9 took place in May 1956. Beginning in 1958, testing was carried out with the XRSSM-N-9a, equipped with the General Electric J79-GE-3 turbojet and a Rocketdyne solid-fueled rocket booster to allow the entire flight envelope to be explored. Evaluation and training missiles with retractable undercarriage were produced as the YTSSM-N-9a and TSSM-N-9a respectively. [1]

After land-based testing, trials including test missile firings were carried out on board the USS King County (LST-857), which had been modified with the replica of a submarine missile hangar and launching system.

The SSM-N-9 Regulus II missile was intended to be launched from the deck of an SSG (guided missile submarine), and the missile most likely would have been deployed on the two Grayback-class submarines and the USS Halibut (SSGN-587), which were designed for the missile, and possibly eventually on four heavy cruisers that had deployed with Regulus I and 23 other submarines potentially available for conversion. Carrying two Regulus II missiles in a hangar integral with the hull (more on surface ships), submarines and ships equipped with the Regulus II would have been equipped with the SINS (Ship's Inertial Navigation System), allowing the control systems of the missiles to be aligned accurately before launching. [2]

The hangar for the supersonic Regulus II cruise missile being installed aboard USS King County (AG-157), a Landing Ship, Tank (LST) converted to an experimental guided-missile testing ship, on 5 April 1957. USS YD-33 is doing the lifting. King County AG-857.jpg
The hangar for the supersonic Regulus II cruise missile being installed aboard USS King County (AG-157), a Landing Ship, Tank (LST) converted to an experimental guided-missile testing ship, on 5 April 1957. USS YD-33 is doing the lifting.

Forty-eight test-flights of Regulus II prototypes were carried out, 30 of which were successful, 14 partially successful and only four failures. A production contract was signed in January 1958 and the only submarine launch was carried out from USS Grayback in September 1958. [2]

Due to the high cost of the missiles (approx one million dollars each), budgetary pressure, and the emergence of the SLBM, the Regulus missile program was terminated on 19 November 1958. Support for the program was finally withdrawn on 18 December 1958, when Secretary of the Navy Thomas S. Gates cancelled the project. At the time of the cancelation, Vought had completed 20 missiles with 27 more on the production line. [2]

Description

The airframe followed contemporary aircraft construction techniques, with weight savings from the use of advanced materials and the short airborne life of the missile. The fuselage was essentially tubular, tapering to a point at the nose, housing the guidance equipment, warhead and systems equipment. The engine was fed with air through a distinctive wedge shaped intake under the center fuselage. Its swept wings attached to its fuselage at the middle position, roughly halfway along its length, and a large swept fin attached to the top of the fuselage at the rear which was sometimes augmented by a large ventral fin at the extreme rear of the fuselage.

Primary control of the Regulus II was through the use of elevons fitted to the outer half of the wing trailing-edges, as the missile was not fitted with a tailplane, and a rudder fitted to the trailing edge of the fin. Flaps were fitted to the inner half of the trailing edge for use during takeoff. Additional stability and control in pitch was provided by small trapezoidal canard foreplanes near the nose of the fuselage.

To launch the missile, the carrier vessel had to surface and deploy the missile and launch apparatus, which consisted of a zero length launcher. Once deployed, the missile had to be linked to the submarine or ship's navigation system to align the inertial navigation system and input target co-ordinates. With the navigation system ready and launch authorisation given, the missile engine would be run-up to full power with afterburner and the large solid-fuelled rocket booster ignited, immediately the missile would leave the zero length launcher and continue to the target autonomously.

Regulus Target Drones

Suitable missiles from the development program and production line were converted to supersonic target drones as the KD2U-1, later redesignated as the MQM-15A and GQM-15A. These targets were used for training of BOMARC surface-to-air missile crews firing from Santa Rosa Island, Florida, and controlled by the Montgomery Air Defense Sector, Gunter Air Force Base, Montgomery, Alabama. The KD2U-1 targets were launched from the Eglin Gulf Test Range base near Ft. Walton Beach, Florida. Drone flights at Eglin commenced on 3 September 1959, making 46 flights with 13 missiles. After the BOMARC tests the remaining missiles were moved to Naval Station Roosevelt Roads, Puerto Rico by 30 September 1961, where flights were begun to test Tartar, Terrier, and Talos surface-to-air missiles. Upon completion of the testing in Puerto Rico in 1963, the Regulus II drones were moved to NAS Point Mugu, California, where they remained in use until December 1965. [2]

Variants

SSM-N-9 Regulus II drawings.PNG
SSM-N-9 Regulus II
The basic designation of the missile, pre-1964.
SSM-N-9a Regulus II
The designation of production missiles, pre-1964.
XRSSM-N-9 Regulus II
Prototype missiles fitted with retractable landing gear for land based development flights, powered by Wright J65 turbojet engines and Aerojet General booster rockets.
XRSSM-N-9a
Prototype missiles fitted with retractable landing gear for land based development flights, powered by General Electric J79 turbojet engines and Rocketdyne booster rockets.
YTSSM-N-9a
Development Training missiles with retractable landing gear.
TSSM-N-9a
Production training missiles with retractable landing gear.
KD2U-1
Pre-1962 designation of the target drone version of the Regulus II
RQM-15A
KD2U-1Regulus II target re-designated in April 1963.
MQM-15A
KD2U-1 Target drones used for research and as targets for the IM-99 Bomarc SAM.
GQM-15A
Gear equipped KD2U-1 target drones re-designated.

Operators

United States

Surviving missiles

Frontiers of Flight Museum, Dallas Love Field, Texas
A Regulus II missile
Point Mugu Missile Park, Naval Air Station Point Mugu, California
The museum's collection includes both a Regulus and a Regulus II missile
The U.S. Veterans Memorial Museum, Huntsville, Alabama
A Regulus II missile handling training device (non-flyable)
USS Growler Intrepid Sea, Air & Space Museum, New York, NY
A Regulus I missile displayed in launch position on a Regulus-equipped submarine; not a Regulus II.

See also

Related Research Articles

<span class="mw-page-title-main">CIM-10 Bomarc</span> Long-range surface-to-air missile

The Boeing CIM-10 Bomarc was a supersonic ramjet powered long-range surface-to-air missile (SAM) used during the Cold War for the air defense of North America. In addition to being the first operational long-range SAM and the first operational pulse doppler aviation radar, it was the only SAM deployed by the United States Air Force.

<span class="mw-page-title-main">Cruise missile</span> Guided missile with precision targeting capabilities and multiple launch platforms

A cruise missile is a guided missile used against terrestrial or naval targets, that remains in the atmosphere and flies the major portion of its flight path at an approximately constant speed. Cruise missiles are designed to deliver a large warhead over long distances with high precision. Modern cruise missiles are capable of traveling at high subsonic, supersonic, or hypersonic speeds, are self-navigating, and are able to fly on a non-ballistic, extremely low-altitude trajectory.

<span class="mw-page-title-main">SSM-N-8 Regulus</span> Type of cruise missile

The SSM-N-8A Regulus or the Regulus I was a United States Navy-developed ship-and-submarine-launched, nuclear-capable turbojet-powered second generation cruise missile, deployed from 1955 to 1964. Its development was an outgrowth of U.S. Navy tests conducted with the German V-1 missile at Naval Air Station Point Mugu in California. Its barrel-shaped fuselage resembled that of numerous fighter aircraft designs of the era, but without a cockpit. Test articles of the Regulus were equipped with landing gear and could take off and land like an airplane. When the missiles were deployed they were launched from a rail launcher, and equipped with a pair of Aerojet JATO bottles on the aft end of the fuselage.

<span class="mw-page-title-main">Nike Hercules</span> Type of surface-to-air missile

The Nike Hercules, initially designated SAM-A-25 and later MIM-14, was a surface-to-air missile (SAM) used by U.S. and NATO armed forces for medium- and high-altitude long-range air defense. It was normally armed with the W31 nuclear warhead, but could also be fitted with a conventional warhead for export use. Its warhead also allowed it to be used in a secondary surface-to-surface role, and the system also demonstrated its ability to hit other short-range missiles in flight.

<span class="mw-page-title-main">Cruise-missile submarine</span> Submarine capable of launching cruise missiles

A cruise missile submarine is a submarine that carries and launches cruise missiles as its primary armament. Missiles greatly enhance a warship's ability to attack surface combatants and strike land targets; although torpedoes are a more discrete option for submerged submarines, missiles give a much longer stand-off range, shorter time to impact the target, as well as the ability to engage multiple targets on different headings at the same time. Many cruise missile submarines retain the capability to deploy nuclear warheads on their missiles, but they are considered distinct from ballistic missile submarines due to the substantial differences between the two weapons systems' flight characteristics; cruise missiles fly aerodynamically using flight surfaces like wings or fins, while a ballistic missile uses its engine power alone as it may exit the atmosphere.

<span class="mw-page-title-main">Lockheed X-7</span> Experimental aircraft to test ramjet engines and missile guidance technology

The Lockheed X-7 was an American unmanned test bed of the 1950s for ramjet engines and missile guidance technology. It was the basis for the later Lockheed AQM-60 Kingfisher, a system used to test American air defenses against nuclear missile attack.

<span class="mw-page-title-main">Sea Eagle (missile)</span> Anti-ship missile

The BAe Sea Eagle is a medium-weight sea-skimming anti-ship missile designed and built by BAe Dynamics. It is designed to sink or disable ships up to the size of aircraft carriers in the face of jamming and other countermeasures including decoys. Its users include the Royal Air Force and Royal Navy, the Royal Saudi Air Force, and the Indian Navy.

<span class="mw-page-title-main">SM-64 Navaho</span> 1950s supersonic intercontinental cruise missile

The North American SM-64 Navaho was a supersonic intercontinental cruise missile project built by North American Aviation (NAA). The final design was capable of delivering a nuclear weapon to the USSR from bases within the US, while cruising at Mach 3 at 60,000 feet (18,000 m) altitude. The missile is named after the Navajo Nation.

<span class="mw-page-title-main">Northrop BQM-74 Chukar</span> Type of aircraft

The BQM-74 Chukar is a series of aerial target drones produced by Northrop. The Chukar has gone through three major revisions, including the initial MQM-74A Chukar I, the MQM-74C Chukar II, and the BQM-74C Chukar III. They are recoverable, remote controlled, subsonic aerial target, capable of speeds up to Mach 0.86 and altitudes from 30 to 40,000 ft.

<span class="mw-page-title-main">Northrop AQM-35</span> Supersonic drone

The AQM-35 was a supersonic target drone produced by the Northrop Corporation.

<span class="mw-page-title-main">Ryan Firebee</span> Series of target drones

The Ryan Firebee is a series of target drones developed by the Ryan Aeronautical Company beginning in 1951. It was one of the first jet-propelled drones, and remains one of the most widely used target drones ever built.

<i>Grayback</i>-class submarine Class of US Navy submarines

The Grayback-class submarine was a class of two guided missile-carrying submarines of the United States Navy. They carried the Regulus I and Regulus II nuclear cruise missiles, deployed 1957–64, that were rapidly phased out by Polaris Submarine Launched Ballistic Missiles (SLBMs). They and USS Halibut were the sole submarines designed specifically to carry Regulus missiles, and the only submarines capable of carrying Regulus II. However, USS Tunny and USS Barbero were modified earlier to carry two Regulus I missiles per boat.

<span class="mw-page-title-main">RIM-67 Standard</span> Extended range surface-to-air missile with anti-ship capability

The RIM-67 Standard ER (SM-1ER/SM-2ER) is an extended range surface-to-air missile (SAM) with a secondary anti-ship capability, originally developed for the United States Navy (USN). The RIM-67 was developed as a replacement for the RIM-8 Talos, a 1950s system deployed on a variety of USN ships, and eventually replaced the RIM-2 Terrier as well, since it was of a similar size and fitted existing Terrier launchers and magazines. The RIM-66 Standard MR was essentially the same missile without the booster stage, designed to replace the RIM-24 Tartar. The RIM-66/67 series thus became the US Navy's universal SAM system, hence the designation "Standard Missile".

<span class="mw-page-title-main">SSM-700K C-Star</span> South Korean anti-ship missile

The SSM-700K C-Star (Haeseong) is a ship-launched sea-skimming surface-to-surface anti-ship cruise missile developed by the South Korean Agency for Defense Development (ADD), LIG Nex1 and the Republic of Korea Navy in 2003. The missiles are deployed on KDX-II and KDX-III destroyers as of 2006, each carrying 8 and 16 of the missiles respectively, and on Ulsan-class frigates.

<span class="mw-page-title-main">SSM-A-5 Boojum</span> Canceled cruise missile project

The XSSM-A-5 Boojum, also known by the project number MX-775B, was a supersonic cruise missile developed by the Northrop Corporation for the United States Air Force in the late 1940s. Intended to deliver a nuclear warhead over intercontinental range, the project was determined to be too ambitious given technical difficulties with the SM-62 Snark which it was planned to follow, and it was canceled in 1951.

<span class="mw-page-title-main">Nord CT41</span> French supersonic target drone

The Nord CT.41 Narwhal was a French target drone, designed and built by Nord Aviation during the late 1950s for the purpose of providing training in the interception of supersonic bomber aircraft.

The Venice missile launch complex was a Cold War Regulus missile firing installation "adjacent to the Venice Municipal Airport" on the Venice, Florida, beach. Beginning in 1959, KD2U-1 drone versions of the Regulus were JATO-launched from the strip of beach in front of the airport, flew across the Gulf of Mexico for simulating a penetrating enemy bomber for test interception, and then were "recovered on the runway at Eglin" AFB. The launch complex was one of several Eglin missile range facilities and conducted the "Regulus 2, KD2U intercept missile test [on] September 3, 1959" in which the "first launch of the Air Force's new Bomarc IM-99A missile [successfully intercepted] the Regulus 2 missile at 35,000 feet altitude and at supersonic speed"

The SSM-N-2 Triton was a supersonic nuclear land-attack cruise missile project for the United States Navy. It was in development from 1946 to 1957, but probably no prototypes were produced or tested. The Triton program was approved in September 1946, designated SSM-2 a year later, and redesignated SSM-N-2 in early 1948. A preliminary design was produced by 1950 as the XSSM-N-2, but was scaled down by 1955 and redesigned again in 1957. Triton was cancelled in 1957, probably as a result of the 1956 decision to focus the Navy's strategic weapons development on the Polaris submarine-launched ballistic missile. In any case, prototypes of the similar Regulus II missile had already flown, and Triton was redundant, offering only an increase in range from 1,000 nautical miles (1,900 km) to 1,500 nautical miles (2,800 km), which Polaris was about to achieve along with many other advantages. Regulus II was itself cancelled in 1958, although testing of missiles already built continued for several years.

The SSM-N-6 Rigel was a proposed United States Navy submarine-launched, nuclear-capable ramjet-powered cruise missile.

References

  1. 1 2 3 4 5 6 7 8 9 10 11 12 13 Parsch, Andreas. "Vought SSM-N-9/RGM-15 Regulus II." Directory of U.S. Military Rockets and Missiles, 2001. Retrieved: 6 January 2013.
  2. 1 2 3 4 5 6 7 Koch, Charles A. "Regulus II cruise missile". Regulus II Cruise Missile. Retrieved: 6 January 2013.