Secondary emission

Last updated
Visualisation of a Townsend avalanche, which is sustained by the generation of secondary electrons in an electric field Electron avalanche.gif
Visualisation of a Townsend avalanche, which is sustained by the generation of secondary electrons in an electric field
Secondary emission used in a photomultiplier tube. The initial electrons emitted when light strikes a photocathode are made to strike a dynode electrode, knocking out more electrons, which strike a second dynode. Each incident electron produces multiple secondary electrons, so the cascaded dynode chain amplifies the initial electrons. Photomultiplier schema en.png
Secondary emission used in a photomultiplier tube. The initial electrons emitted when light strikes a photocathode are made to strike a dynode electrode, knocking out more electrons, which strike a second dynode. Each incident electron produces multiple secondary electrons, so the cascaded dynode chain amplifies the initial electrons.

In particle physics, secondary emission is a phenomenon where primary incident particles of sufficient energy, when hitting a surface or passing through some material, induce the emission of secondary particles. The term often refers to the emission of electrons when charged particles like electrons or ions in a vacuum tube strike a metal surface; these are called secondary electrons. [1] In this case, the number of secondary electrons emitted per incident particle is called secondary emission yield. If the secondary particles are ions, the effect is termed secondary ion emission. Secondary electron emission is used in photomultiplier tubes and image intensifier tubes to amplify the small number of photoelectrons produced by photoemission, making the tube more sensitive. It also occurs as an undesirable side effect in electronic vacuum tubes when electrons from the cathode strike the anode, and can cause parasitic oscillation.

Contents

Applications

Secondary emissive materials

Commonly used secondary emissive materials include

Photo multipliers and similar devices

In a photomultiplier tube, [2] one or more electrons are emitted from a photocathode and accelerated towards a polished metal electrode (called a dynode). They hit the electrode surface with sufficient energy to release a number of electrons through secondary emission. These new electrons are then accelerated towards another dynode, and the process is repeated several times, resulting in an overall gain ('electron multiplication') in the order of typically one million and thus generating an electronically detectable current pulse at the last dynodes.

Similar electron multipliers can be used for detection of fast particles like electrons or ions.

Historic applications

The display on an oscilloscope at normal intensity. Oscilloscopeabc.jpg
The display on an oscilloscope at normal intensity.
The same tube with greater intensity. The disk around the dot in the center is due to secondary emission. Electrons are struck off the screen and travel backwards into the tube. The voltage across the tube causes them to be accelerated forward again, striking the screen over a wide area. Oscilloscopeabcde.jpg
The same tube with greater intensity. The disk around the dot in the center is due to secondary emission. Electrons are struck off the screen and travel backwards into the tube. The voltage across the tube causes them to be accelerated forward again, striking the screen over a wide area.

Special amplifying tubes

In the 1930s special amplifying tubes were developed which deliberately "folded" the electron beam, by having it strike a dynode to be reflected into the anode. This had the effect of increasing the plate-grid distance for a given tube size, increasing the transconductance of the tube and reducing its noise figure. A typical such "orbital beam hexode" was the RCA 1630, introduced in 1939. Because the heavy electron current in such tubes damaged the dynode surface rapidly, their lifetime tended to be very short compared to conventional tubes. [3]

Early computer memory tubes

The first random access computer memory used a type of cathode ray tube called the Williams tube that used secondary emission to store bits on the tube face. Another random access computer memory tube based on secondary emission was the Selectron tube. Both were made obsolete by the invention of magnetic-core memory.

Undesirable effects - the tetrode

Secondary emission can be undesirable such as in the tetrode thermionic valve (tube). In this instance the positively charged screen grid can accelerate the electron stream sufficiently to cause secondary emission at the anode (plate). This can give rise to excessive screen grid current. It is also partly responsible for this type of valve (tube), particularly early types with anodes not treated to reduce secondary emission, exhibiting a 'negative resistance' characteristic, which could cause the tube to become unstable. This side effect could be put to use by using some older valves (e.g., type 77 pentode) as dynatron oscillators. This effect was prevented by adding a third grid to the tetrode, called the suppressor grid, to repel the electrons back toward the plate. This tube was called the pentode.

See also

Related Research Articles

<span class="mw-page-title-main">Cathode ray</span> Stream of electrons observed in vacuum tubes

Cathode rays or electron beam (e-beam) are streams of electrons observed in discharge tubes. If an evacuated glass tube is equipped with two electrodes and a voltage is applied, glass behind the positive electrode is observed to glow, due to electrons emitted from the cathode. They were first observed in 1859 by German physicist Julius Plücker and Johann Wilhelm Hittorf, and were named in 1876 by Eugen Goldstein Kathodenstrahlen, or cathode rays. In 1897, British physicist J. J. Thomson showed that cathode rays were composed of a previously unknown negatively charged particle, which was later named the electron. Cathode-ray tubes (CRTs) use a focused beam of electrons deflected by electric or magnetic fields to render an image on a screen.

<span class="mw-page-title-main">Cathode</span> An electrode where reduction take place

A cathode is the electrode from which a conventional current leaves a polarized electrical device. This definition can be recalled by using the mnemonic CCD for Cathode Current Departs. A conventional current describes the direction in which positive charges move. Electrons have a negative electrical charge, so the movement of electrons is opposite to that of the conventional current flow. Consequently, the mnemonic cathode current departs also means that electrons flow into the device's cathode from the external circuit. For example, the end of a household battery marked with a + (plus) is the cathode.

<span class="mw-page-title-main">Triode</span> Single-grid amplifying vacuum tube having three active electrodes

A triode is an electronic amplifying vacuum tube consisting of three electrodes inside an evacuated glass envelope: a heated filament or cathode, a grid, and a plate (anode). Developed from Lee De Forest's 1906 Audion, a partial vacuum tube that added a grid electrode to the thermionic diode, the triode was the first practical electronic amplifier and the ancestor of other types of vacuum tubes such as the tetrode and pentode. Its invention founded the electronics age, making possible amplified radio technology and long-distance telephony. Triodes were widely used in consumer electronics devices such as radios and televisions until the 1970s, when transistors replaced them. Today, their main remaining use is in high-power RF amplifiers in radio transmitters and industrial RF heating devices. In recent years there has been a resurgence in demand for low power triodes due to renewed interest in tube-type audio systems by audiophiles who prefer the pleasantly (warm) distorted sound of tube-based electronics.

<span class="mw-page-title-main">Vacuum tube</span> Device that controls electric current between electrodes in an evacuated container

A vacuum tube, electron tube, valve, or tube, is a device that controls electric current flow in a high vacuum between electrodes to which an electric potential difference has been applied.

A tetrode is a vacuum tube having four active electrodes. The four electrodes in order from the centre are: a thermionic cathode, first and second grids and a plate. There are several varieties of tetrodes, the most common being the screen-grid tube and the beam tetrode. In screen-grid tubes and beam tetrodes, the first grid is the control grid and the second grid is the screen grid. In other tetrodes one of the grids is a control grid, while the other may have a variety of functions.

<span class="mw-page-title-main">Photomultiplier tube</span> Fast, high sensitivty, low noise electronic photon detector

Photomultiplier tubes (photomultipliers or PMTs for short) are extremely sensitive detectors of light in the ultraviolet, visible, and near-infrared ranges of the electromagnetic spectrum. They are members of the class of vacuum tubes, more specifically vacuum phototubes. These detectors multiply the current produced by incident light by as much as 100 million times or 108 (i.e., 160 dB), in multiple dynode stages, enabling (for example) individual photons to be detected when the incident flux of light is low.

<span class="mw-page-title-main">Dynode</span>

A dynode is an electrode in a vacuum tube that serves as an electron multiplier through secondary emission. The first tube to incorporate a dynode was the dynatron, an ancestor of the magnetron, which used a single dynode. Photomultiplier and video camera tubes generally include a series of dynodes, each at a more positive electrical potential than its predecessor. Secondary emission occurs at the surface of each dynode. Such an arrangement is able to amplify the tiny current emitted by the photocathode, typically by a factor of one million.

<span class="mw-page-title-main">Pentagrid converter</span> Type of vacuum tube; frequency mixer of a superheterodyne radio receiver

The pentagrid converter is a type of radio receiving valve with five grids used as the frequency mixer stage of a superheterodyne radio receiver.

<span class="mw-page-title-main">Control grid</span> Electrode used to control electron flow within a vacuum tube

The control grid is an electrode used in amplifying thermionic valves such as the triode, tetrode and pentode, used to control the flow of electrons from the cathode to the anode (plate) electrode. The control grid usually consists of a cylindrical screen or helix of fine wire surrounding the cathode, and is surrounded in turn by the anode. The control grid was invented by Lee De Forest, who in 1906 added a grid to the Fleming valve to create the first amplifying vacuum tube, the Audion (triode).

A suppressor grid is a wire screen used in a thermionic valve to suppress secondary emission. It is also called the antidynatron grid, as it reduces or prevents dynatron oscillations. It is located between the screen grid and the plate electrode (anode). The suppressor grid is used in the pentode vacuum tube, so called because it has five concentric electrodes: cathode, control grid, screen grid, suppressor grid, and plate, and also in other tubes with more grids, such as the hexode. The suppressor grid and pentode tube were invented in 1926 by Gilles Holst and Bernard D. H. Tellegen at Phillips Electronics.

<span class="mw-page-title-main">Dynatron oscillator</span> Vacuum tube electronic oscillator circuit

In electronics, the dynatron oscillator, invented in 1918 by Albert Hull at General Electric, is an obsolete vacuum tube electronic oscillator circuit which uses a negative resistance characteristic in early tetrode vacuum tubes, caused by a process called secondary emission. It was the first negative resistance vacuum tube oscillator. The dynatron oscillator circuit was used to a limited extent as beat frequency oscillators (BFOs), and local oscillators in vacuum tube radio receivers as well as in scientific and test equipment from the 1920s to the 1940s but became obsolete around World War 2 due to the variability of secondary emission in tubes.

<span class="mw-page-title-main">Glow discharge</span>

A glow discharge is a plasma formed by the passage of electric current through a gas. It is often created by applying a voltage between two electrodes in a glass tube containing a low-pressure gas. When the voltage exceeds a value called the striking voltage, the gas ionization becomes self-sustaining, and the tube glows with a colored light. The color depends on the gas used.

A vacuum arc can arise when the surfaces of metal electrodes in contact with a good vacuum begin to emit electrons either through heating or in an electric field that is sufficient to cause field electron emission. Once initiated, a vacuum arc can persist, since the freed particles gain kinetic energy from the electric field, heating the metal surfaces through high-speed particle collisions. This process can create an incandescent cathode spot, which frees more particles, thereby sustaining the arc. At sufficiently high currents an incandescent anode spot may also be formed.

<span class="mw-page-title-main">Plate electrode</span> Type of electrode used in vacuum tubes

A plate, usually called anode in Britain, is a type of electrode that forms part of a vacuum tube. It is usually made of sheet metal, connected to a wire which passes through the glass envelope of the tube to a terminal in the base of the tube, where it is connected to the external circuit. The plate is given a positive potential, and its function is to attract and capture the electrons emitted by the cathode. Although it is sometimes a flat plate, it is more often in the shape of a cylinder or flat open-ended box surrounding the other electrodes.

<span class="mw-page-title-main">Beam tetrode</span>

A beam tetrode, sometimes called a beam power tube, is a type of vacuum tube or thermionic valve that has two grids and forms the electron stream from the cathode into multiple partially collimated beams to produce a low potential space charge region between the anode and screen grid to return anode secondary emission electrons to the anode when the anode potential is less than that of the screen grid. Beam tetrodes are usually used for power amplification, from audio frequency to radio frequency. The beam tetrode produces greater output power than a triode or pentode with the same anode supply voltage. The first beam tetrode marketed was the Marconi N40, introduced in 1935. Beam tetrodes manufactured and used in the 21st century include the 4CX250B, KT66 and variants of the 6L6.

<span class="mw-page-title-main">Electron multiplier</span>

An electron multiplier is a vacuum-tube structure that multiplies incident charges. In a process called secondary emission, a single electron can, when bombarded on secondary-emissive material, induce emission of roughly 1 to 3 electrons. If an electric potential is applied between this metal plate and yet another, the emitted electrons will accelerate to the next metal plate and induce secondary emission of still more electrons. This can be repeated a number of times, resulting in a large shower of electrons all collected by a metal anode, all having been triggered by just one.

<span class="mw-page-title-main">Pentode</span> Vacuum tube with five electrodes

A pentode is an electronic device having five electrodes. The term most commonly applies to a three-grid amplifying vacuum tube or thermionic valve that was invented by Gilles Holst and Bernhard D.H. Tellegen in 1926. The pentode was developed from the screen-grid tube or shield-grid tube by the addition of a grid between the screen grid and the plate. The screen-grid tube was limited in performance as an amplifier due to secondary emission of electrons from the plate. The additional grid is called the suppressor grid. The suppressor grid is usually operated at or near the potential of the cathode and prevents secondary emission electrons from the plate from reaching the screen grid. The addition of the suppressor grid permits much greater output signal amplitude to be obtained from the plate of the pentode in amplifier operation than from the plate of the screen-grid tube at the same plate supply voltage. Pentodes were widely manufactured and used in electronic equipment until the 1960s to 1970s, during which time transistors replaced tubes in new designs. During the first quarter of the 21st century, a few pentode tubes have been in production for high power radio frequency applications, musical instrument amplifiers, home audio and niche markets.

In Europe, the principal method of numbering vacuum tubes was the nomenclature used by the Philips company and its subsidiaries Mullard in the UK, Valvo(deit) in Germany, Radiotechnique (Miniwatt-Dario brand) in France, and Amperex in the United States, from 1934 on. Adhering manufacturers include AEG (de), CdL (1921, French Mazda brand), CIFTE (fr, Mazda-Belvu brand), EdiSwan (British Mazda brand), Lorenz (de), MBLE(frnl), RCA (us), RFT(desv) (de), Siemens (de), Telefunken (de), Tesla (cz), Toshiba (ja), Tungsram (hu), and Unitra. This system allocated meaningful codes to tubes based on their function and became the starting point for the Pro Electron naming scheme for active devices.

<span class="mw-page-title-main">Townsend discharge</span> Gas ionization process

In electromagnetism, the Townsend discharge or Townsend avalanche is a ionisation process for gases where free electrons are accelerated by an electric field, collide with gas molecules, and consequently free additional electrons. Those electrons are in turn accelerated and free additional electrons. The result is an avalanche multiplication that permits electrical conduction through the gas. The discharge requires a source of free electrons and a significant electric field; without both, the phenomenon does not occur.

References

  1. R. Kollath, Secondary electron emission of solids irradiated by electrons, Encyclopedia of Physics (ed. S. Flügge) Vol. 21, p. 232 - 303 (1956, in German)
  2. H. Semat, J.R. Albright, Introduction to Atomic and Nuclear Physics, 5th ed., ch. 4.12, Chapman and Hall, London (1972)
  3. "1630, Tube 1630; Röhre 1630 ID17477, HEXODE".