Selective laser sintering

Last updated
An SLS machine being used at the Centro de Pesquisas Renato Archer in Brazil. 3dprinter.jpg
An SLS machine being used at the Centro de Pesquisas Renato Archer in Brazil.

Selective laser sintering (SLS) is an additive manufacturing (AM) technique that uses a laser as the power and heat source to sinter powdered material (typically nylon or polyamide), aiming the laser automatically at points in space defined by a 3D model, binding the material together to create a solid structure. [1] [2] [3] It is similar to selective laser melting; the two are instantiations of the same concept but differ in technical details. SLS (as well as the other mentioned AM techniques) is a relatively new technology that so far has mainly been used for rapid prototyping and for low-volume production of component parts. Production roles are expanding as the commercialization of AM technology improves.

Contents

History

Selective laser sintering (SLS) was developed and patented by Dr. Carl Deckard and academic adviser, Dr. Joe Beaman at the University of Texas at Austin in the mid-1980s, under sponsorship of DARPA. [4] Deckard and Beaman were involved in the resulting start up company Desk Top Manufacturing (DTM) Corp, established to design and build the SLS machines. In 2001, 3D Systems, the biggest competitor to DTM Corp. and SLS technology, acquired DTM Corp.. [5] The most recent patent regarding Deckard's SLS technology was issued January 28, 1997 and expired January 28, 2014. [6]

A similar process was patented without being commercialized by R. F. Housholder in 1979. [7]

As SLS requires the use of high-powered lasers it is often too expensive, not to mention possibly too dangerous, to use in the home. The associated expense and potential danger of SLS printing due to lack of commercially available laser systems with Class-1 safety enclosures means that the home market for SLS printing is not as large as the market for other additive manufacturing technologies, such as Fused Deposition Modeling (FDM).

Technology

An additive manufacturing layer technology, SLS involves the use of a high power laser (for example, a carbon dioxide laser) to fuse small particles of plastic, metal, ceramic, or glass powders into a mass that has a desired three-dimensional shape. The laser selectively fuses powdered material by scanning cross-sections generated from a 3-D digital description of the part (for example from a CAD file or scan data) on the surface of a powder bed. After each cross-section is scanned, the powder bed is lowered by one layer thickness, a new layer of material is applied on top, and the process is repeated until the part is completed. [8]

Selective laser sintering process
1 Laser 2 Scanner system 3 Powder delivery system 4 Powder delivery piston 5 Roller 6 Fabrication piston 7 Fabrication powder bed 8 Object being fabricated (see inset) A Laser scanning direction B Sintered powder particles (brown state) C Laser beam D Laser sintering E Pre-placed powder bed (green state) F Unsintered material in previous layers SLS schematic.svg
Selective laser sintering process
1 Laser 2 Scanner system 3 Powder delivery system 4 Powder delivery piston 5 Roller 6 Fabrication piston 7 Fabrication powder bed 8 Object being fabricated (see inset) A Laser scanning direction B Sintered powder particles (brown state) C Laser beam D Laser sintering E Pre-placed powder bed (green state) F Unsintered material in previous layers

Because finished part density depends on peak laser power, rather than laser duration, a SLS machine typically uses a pulsed laser. The SLS machine preheats the bulk powder material in the powder bed somewhat below its melting point, to make it easier for the laser to raise the temperature of the selected regions the rest of the way to the melting point. [9]

In contrast with SLA and FDM, which most often require special support structures to fabricate overhanging designs, SLS does not need a separate feeder for support material because the part being constructed is surrounded by unsintered powder at all times. This allows for the construction of previously impossible geometries. Also, since the machine's chamber is always filled with powder material the fabrication of multiple parts has a far lower impact on the overall difficulty and price of the design because through a technique known as 'Nesting', where multiple parts can be positioned to fit within the boundaries of the machine. One design aspect which should be observed however is that with SLS it is 'impossible' to fabricate a hollow but fully enclosed element. This is because the unsintered powder within the element could not be drained.

Since patents have started to expire, affordable home printers have become possible, but the heating process is still an obstacle, with a power consumption of up to 5 kW and temperatures having to be controlled within 2 °C for the three stages of preheating, melting and storing before removal. Archived 2015-04-28 at the Wayback Machine

Materials

The quality of printed structures depends on the various factors include powder properties such as particle size and shape, density, roughness, and porosity. [10] Furthermore, the particle distribution and their thermal properties affect a lot on the flowability of the powder. [11]

Commercially-available materials used in SLS come in powder form and include, but are not limited to, polymers such as polyamides (PA), polystyrenes (PS), thermoplastic elastomers (TPE), and polyaryletherketones (PAEK). [12] Polyamides are the most commonly used SLS materials due to their ideal sintering behavior as a semi-crystalline thermoplastic, resulting in parts with desirable mechanical properties. [13] Polycarbonate (PC) is a material of high interest for SLS due to its high toughness, thermal stability, and flame resistance; however, such amorphous polymers processed by SLS tend to result in parts with diminished mechanical properties, dimensional accuracy and thus are limited to applications where these are of low importance. [13] Metal materials are not commonly used in SLS since the development of selective laser melting.

Powder Production

Powder particles are typically produced by cryogenic grinding in a ball mill at temperatures well below the glass transition temperature of the material, which can be reached by running the grinding process with added cryogenic materials such as dry ice (dry grinding), or mixtures of liquid nitrogen and organic solvents (wet grinding). [14] The process can result in spherical or irregular shaped particles as low as five microns in diameter. [14] Powder particle size distributions are typically gaussian and range from 15 to 100 microns in diameter, although this can be customized to suit different layer thicknesses in the SLS process. [15] Chemical binder coatings can be applied to the powder surfaces post-process; [16] these coatings aid in the sintering process and are especially helpful to form composite material parts such as with alumina particles coated with thermoset epoxy resin. [15]

Sintering mechanisms

Diagram showing formation of neck in two sintered powder particles. Original shapes are shown in red. Necking.png
Diagram showing formation of neck in two sintered powder particles. Original shapes are shown in red.

Sintering in SLS primarily occurs in the liquid state when the powder particles forms a micro-melt layer at the surface, resulting in a reduction in viscosity and the formation of a concave radial bridge between particles, known as necking, [16] due to the material's response to lower its surface energy. In the case of coated powders, the purpose of the laser is to melt the surface coating which will act as a binder. Solid state sintering is also a contributing factor, albeit with a much reduced influence, and occurs at temperatures below the melting temperature of the material. The principal driving force behind the process is again the material's response to lower its free energy state resulting in diffusion of molecules across particles.

Applications

SLS technology is in wide use at many industries around the world due to its ability to easily make complex geometries with little to no added manufacturing effort. Its most common application is in prototype parts early in the design cycle such as for investment casting patterns, automotive hardware, and wind tunnel models. SLS is also increasingly being used in limited-run manufacturing to produce end-use parts for aerospace, military, [17] medical, pharmaceutical, [18] and electronics hardware. On a shop floor, SLS can be used for rapid manufacturing of tooling, jigs, and fixtures. [19]

Advantages

Disadvantages

See also

Related Research Articles

<span class="mw-page-title-main">Sintering</span> Process of forming and bonding material by heat or pressure

Sintering or frittage is the process of compacting and forming a solid mass of material by pressure or heat without melting it to the point of liquefaction. Sintering happens as part of a manufacturing process used with metals, ceramics, plastics, and other materials. The nanoparticles in the sintered material diffuse across the boundaries of the particles, fusing the particles together and creating a solid piece.

<span class="mw-page-title-main">Powder metallurgy</span> Process of sintering metal powders

Powder metallurgy (PM) is a term covering a wide range of ways in which materials or components are made from metal powders. PM processes can reduce or eliminate the need for subtractive processes in manufacturing, lowering material losses and reducing the cost of the final product.

<span class="mw-page-title-main">3D printing</span> Additive process used to make a three-dimensional object

3D printing or additive manufacturing is the construction of a three-dimensional object from a CAD model or a digital 3D model. It can be done in a variety of processes in which material is deposited, joined or solidified under computer control, with the material being added together, typically layer by layer.

Laser powder forming, also known by the proprietary name is an additive manufacturing technology developed for fabricating metal parts directly from a computer-aided design (CAD) solid model by using a metal powder injected into a molten pool created by a focused, high-powered laser beam. This technique is also equivalent to several trademarked techniques that have the monikers direct metal deposition (DMD), and laser consolidation (LC). Compared to processes that use powder beds, such as selective laser melting (SLM) objects created with this technology can be substantially larger, even up to several feet long.

<span class="mw-page-title-main">3D Systems</span>

3D Systems, headquartered in Rock Hill, South Carolina, is a company that engineers, manufactures, and sells 3D printers, 3D printing materials, 3D scanners, and offers a 3D printing service. The company creates product concept models, precision and functional prototypes, master patterns for tooling, as well as production parts for direct digital manufacturing. It uses proprietary processes to fabricate physical objects using input from computer-aided design and manufacturing software, or 3D scanning and 3D sculpting devices.

<span class="mw-page-title-main">Cold spraying</span> Coating deposition method

Gas dynamic cold spraying or cold spraying (CS) is a coating deposition method. Solid powders are accelerated in a supersonic gas jet to velocities up to ca. 1200 m/s. During impact with the substrate, particles undergo plastic deformation and adhere to the surface. To achieve a uniform thickness the spraying nozzle is scanned along the substrate. Metals, polymers, ceramics, composite materials and nanocrystalline powders can be deposited using cold spraying. The kinetic energy of the particles, supplied by the expansion of the gas, is converted to plastic deformation energy during bonding. Unlike thermal spraying techniques, e.g., plasma spraying, arc spraying, flame spraying, or high velocity oxygen fuel (HVOF), the powders are not melted during the spraying process.

Electron-beam additive manufacturing, or electron-beam melting (EBM) is a type of additive manufacturing, or 3D printing, for metal parts. The raw material is placed under a vacuum and fused together from heating by an electron beam. This technique is distinct from selective laser sintering as the raw material fuses having completely melted.

Behrokh Khoshnevis is the President and CEO of Contour Crafting Corporation and the Louise L. Dunn Distinguished Professor of Engineering at the University of Southern California (USC), where he has affiliations with the Aerospace & Mechanical Engineering, Astronautics Engineering, Civil & Environmental Engineering and Industrial & Systems Engineering departments. He is the Director of the Center for Rapid Automated Fabrication Technologies (CRAFT) at USC. He is a Member of the National Academy of Engineering, a Fellow Member of the National Academy of Inventors and is a Fellow of the American Society for the Advancement of Science. He is also a Fellow member of the Society for Computer Simulation International, a Fellow member of the Institute of Industrial & Systems Engineering and a Fellow member of the Society of Manufacturing Engineers. He is also a NASA Innovative Advanced Concepts (NIAC) Fellow.

Digital modeling and fabrication is a design and production process that combines 3D modeling or computing-aided design (CAD) with additive and subtractive manufacturing. Additive manufacturing is also known as 3D printing, while subtractive manufacturing may also be referred to as machining, and many other technologies can be exploited to physically produce the designed objects.

<span class="mw-page-title-main">Selective laser melting</span> 3D printing technique

Selective laser melting (SLM) is one of many proprietary names for a metal additive manufacturing (AM) technology that uses a bed of powder with a source of heat to create metal parts. Also known as direct metal laser sintering (DMLS), the ASTM standard term is powder bed fusion (PBF). PBF is a rapid prototyping, 3D printing, or additive manufacturing technique designed to use a high power-density laser to melt and fuse metallic powders together.

<span class="mw-page-title-main">Powder bed and inkjet head 3D printing</span> 3D printing technique

Binder jet 3D printing, known variously as "Powder bed and inkjet" and "drop-on-powder" printing, is a rapid prototyping and additive manufacturing technology for making objects described by digital data such as a CAD file. Binder jetting is one of the seven categories of additive manufacturing processes according to ASTM and ISO.

Solid Concepts, Inc. is a custom manufacturing company engaged in engineering, manufacturing, production, and prototyping. The company is headquartered in Valencia, California, in the Los Angeles County area, with six other facilities located around the United States. Solid Concepts is an additive manufacturing service provider as well as a major manufacturer of business products, aerospace, unmanned systems, medical equipment and devices, foundry cast patterns, industrial equipment and design, and transportation parts.

Carl Robert Deckard, Ph.D, ME was an American inventor, teacher, and businessman, best known for inventing and developing Selective Laser Sintering (SLS), a method of 3D printing. He died at the age of 58, on 23 December 2019.

<span class="mw-page-title-main">Fused filament fabrication</span> 3D printing process

Fused filament fabrication (FFF), also known as fused deposition modeling, or filament freeform fabrication, is a 3D printing process that uses a continuous filament of a thermoplastic material. Filament is fed from a large spool through a moving, heated printer extruder head, and is deposited on the growing work. The print head is moved under computer control to define the printed shape. Usually the head moves in two dimensions to deposit one horizontal plane, or layer, at a time; the work or the print head is then moved vertically by a small amount to begin a new layer. The speed of the extruder head may also be controlled to stop and start deposition and form an interrupted plane without stringing or dribbling between sections. "Fused filament fabrication" was coined by the members of the RepRap project to give an acronym (FFF) that would be legally unconstrained in its use.

3D metal moulding, also referred to as metal injection moulding or (MIM), is used to manufacture components with complex geometries. The process uses a mixture of metal powders and polymer binders – also known as "feedstock" – which are then injection-moulded.

<span class="mw-page-title-main">3D printing processes</span> List of 3D printing processes

A variety of processes, equipment, and materials are used in the production of a three-dimensional object via additive manufacturing. 3D printing is also known as additive manufacturing, because the numerous available 3D printing process tend to be additive in nature, with a few key differences in the technologies and the materials used in this process.

<span class="mw-page-title-main">Ian Gibson (professor)</span>

Ian Gibson is a Professor of Design Engineering at the University of Twente. Gibson was selected as the scientific director of Fraunhofer Project Center at the University of Twente and is a recipient of lifetime achievement award, the Freeform and Additive Manufacturing Award. His main areas of research are in at the additive manufacturing, multi-material systems, micro-RP, Rapid Prototyping, Medical Modelling and tissue engineering.

Cold spray additive manufacturing (CSAM) is a particular application of cold spraying, able to fabricate freestanding parts or to build features on existing components. During the process, fine powder particles are accelerated in a high-velocity compressed gas stream, and upon the impact on a substrate or backing plate, deform and bond together creating a layer. Moving the nozzle over a substrate repeatedly, a deposit is building up layer-by-layer, to form a part or component. If an industrial robot or computer controlled manipulator controls the spray gun movements, complex shapes can be created. To achieve 3D shape, there are two different approaches. First to fix the substrate and move the cold spray gun/nozzle using a robotic arm, the second one is to move the substrate with a robotic arm, and keep the spray-gun nozzle fixed. There is also a possibility to combine these two approaches either using two robotic arms or other manipulators. The process always requires a substrate and uses only powder as raw material.

Research on the health and safety hazards of 3D printing is new and in development due to the recent proliferation of 3D printing devices. In 2017, the European Agency for Safety and Health at Work has published a discussion paper on the processes and materials involved in 3D printing, potential implications of this technology for occupational safety and health and avenues for controlling potential hazards.

Laser metal deposition (LMD) is an additive manufacturing process in which a feedstock material is melted with a laser and then deposited onto a substrate. A variety of pure metals and alloys can be used as the feedstock, as well as composite materials such as metal matrix composites. Laser sources with a wide variety of intensities, wavelengths, and optical configurations can be used. While LMD is typically a melt-based process, this is not a requirement, as discussed below. Melt-based processes typically have a strength advantage, due to achieving a full metallurgical fusion.

References

  1. Lekurwale, Srushti; Karanwad, Tukaram; Banerjee, Subham (2022-06-01). "Selective laser sintering (SLS) of 3D printlets using a 3D printer comprised of IR/red-diode laser". Annals of 3D Printed Medicine. 6: 100054. doi: 10.1016/j.stlm.2022.100054 . ISSN   2666-9641. S2CID   247040011.
  2. Awad, Atheer; Fina, Fabrizio; Goyanes, Alvaro; Gaisford, Simon; Basit, Abdul W. (2021-07-01). "Advances in powder bed fusion 3D printing in drug delivery and healthcare". Advanced Drug Delivery Reviews. 174: 406–424. doi:10.1016/j.addr.2021.04.025. ISSN   0169-409X. PMID   33951489. S2CID   233869672.
  3. Charoo, Naseem A.; Barakh Ali, Sogra F.; Mohamed, Eman M.; Kuttolamadom, Mathew A.; Ozkan, Tanil; Khan, Mansoor A.; Rahman, Ziyaur (2020-06-02). "Selective laser sintering 3D printing – an overview of the technology and pharmaceutical applications". Drug Development and Industrial Pharmacy. 46 (6): 869–877. doi:10.1080/03639045.2020.1764027. ISSN   0363-9045. PMID   32364418. S2CID   218490148.
  4. Deckard, C., "Method and apparatus for producing parts by selective sintering", U.S. patent 4,863,538 , filed October 17, 1986, published September 5, 1989.
  5. Lou, Alex and Grosvenor, Carol "Selective Laser Sintering, Birth of an Industry", The University of Texas, December 07, 2012. Retrieved on March 22, 2013.
  6. US5597589
  7. Housholder, R., "Molding Process", U.S. patent 4,247,508 , filed December 3, 1979, published January 27, 1981.
  8. "Design Guide: Selective Laser Sintering (SLS)" (PDF). Xometry.
  9. Prasad K. D. V. Yarlagadda; S. Narayanan (February 2005). GCMM 2004: 1st International Conference on Manufacturing and Management. Alpha Science Int'l. pp. 73–. ISBN   978-81-7319-677-5 . Retrieved 18 June 2011.
  10. Leturia, M.; Benali, M.; Lagarde, S.; Ronga, I.; Saleh, K. (2014-02-01). "Characterization of flow properties of cohesive powders: A comparative study of traditional and new testing methods". Powder Technology. 253: 406–423. doi:10.1016/j.powtec.2013.11.045. ISSN   0032-5910.
  11. Leu, Ming C.; Pattnaik, Shashwatashish; Hilmas, Gregory E. (March 2012). "Investigation of laser sintering for freeform fabrication of zirconium diboride parts". Virtual and Physical Prototyping. 7 (1): 25–36. doi:10.1080/17452759.2012.666119. ISSN   1745-2759. S2CID   137566316.
  12. "High-end Plastic Materials for Additive Manufacturing". www.eos.info. Retrieved 2019-02-19.
  13. 1 2 Kloos, Stephanie; Dechet, Maximilian A.; Peukert, Wolfgang; Schmidt, Jochen (July 2018). "Production of spherical semi-crystalline polycarbonate microparticles for Additive Manufacturing by liquid-liquid phase separation". Powder Technology. 335: 275–284. doi:10.1016/j.powtec.2018.05.005. ISSN   0032-5910. S2CID   103342613.
  14. 1 2 Schmidt, Jochen; Plata, Miguel; Tröger, Sulay; Peukert, Wolfgang (September 2012). "Production of polymer particles below 5μm by wet grinding". Powder Technology. 228: 84–90. doi:10.1016/j.powtec.2012.04.064. ISSN   0032-5910.
  15. 1 2 Yang, Qiuping; Li, Huizhi; Zhai, Yubo; Li, Xiaofeng; Zhang, Peizhi (2018-08-13). "The synthesis of epoxy resin coated Al2O3 composites for selective laser sintering 3D printing". Rapid Prototyping Journal. 24 (6): 1059–1066. doi:10.1108/rpj-09-2017-0189. ISSN   1355-2546. S2CID   139324761.
  16. 1 2 Kruth, J-P.; Mercelis, P.; Van Vaerenbergh, J.; Froyen, L.; Rombouts, M. (February 2005). "Binding mechanisms in selective laser sintering and selective laser melting". Rapid Prototyping Journal. 11 (1): 26–36. doi:10.1108/13552540510573365. ISSN   1355-2546. S2CID   53130687.
  17. Islam, Muhammed Kamrul; Hazell, Paul J.; Escobedo, Juan P.; Wang, Hongxu (July 2021). "Biomimetic armour design strategies for additive manufacturing: A review". Materials & Design. 205: 109730. doi: 10.1016/j.matdes.2021.109730 .
  18. Trenfield, Sarah J.; Awad, Atheer; Goyanes, Alvaro; Gaisford, Simon; Basit, Abdul W. (May 2018). "3D Printing Pharmaceuticals: Drug Development to Frontline Care". Trends in Pharmacological Sciences. 39 (5): 440–451. doi:10.1016/j.tips.2018.02.006. ISSN   0165-6147. PMID   29534837. S2CID   3845926.
  19. "Selective Laser Sintering Applications Overview | Quickparts". www.3dsystems.com. Archived from the original on 2019-04-08. Retrieved 2019-02-25.
  20. Biological evaluation of medical devices - Part 1 : Evaluation and testing within a risk management process (ISO 10993-1:2009). International Organization for Standardization (ISO). 2009. OCLC   839985896.
  21. "Selective Laser Sintering (SLS) Mississauga | SLS Sintering".