Silver acetate

Last updated
Silver acetate
Ag2(OAc)2.png
Silver acetate.jpg
Names
IUPAC name
Silver(I) acetate
Systematic IUPAC name
Silver(I) ethanoate
Other names
Acetic acid, silver(I) salt
Silver ethanoate
Argentous acetate
Argentous ethanoate
Identifiers
3D model (JSmol)
ChemSpider
ECHA InfoCard 100.008.414 OOjs UI icon edit-ltr-progressive.svg
EC Number
  • 209-254-9
PubChem CID
RTECS number
  • AJ4100000
UNII
  • InChI=1S/C2H4O2.Ag/c1-2(3)4;/h1H3,(H,3,4);/q;+1/p-1 Yes check.svgY
    Key: CQLFBEKRDQMJLZ-UHFFFAOYSA-M Yes check.svgY
  • InChI=1/C2H4O2.Ag/c1-2(3)4;/h1H3,(H,3,4);/q;+1/p-1
    Key: CQLFBEKRDQMJLZ-REWHXWOFAJ
  • ionic monomer:CC(=O)[O-].[Ag+]
  • coordination dimer without Ag-Ag bond:C[C-]0O[Ag+]O[C-](C)O[Ag]O0
  • coordination dimer with Ag-Ag bond:C[C-]0O[Ag+]1O[C-](C)O[Ag]1O0
Properties
AgC2H3O2
Molar mass 166.912 g/mol
Appearancewhite to slightly grayish powder
slightly acidic odor
Density 3.26 g/cm3, solid
Melting point 220 °C (428 °F; 493 K) (decomposes)
1.02 g/100 mL(20 °C)
1.94×103 [1]
60.4·10−6 cm3/mol
Hazards
GHS labelling: [2]
GHS-pictogram-exclam.svg GHS-pictogram-pollu.svg
Warning
H315, H319, H335, H400
P261, P264, P271, P273, P280, P302+P352, P304+P340, P305+P351+P338, P312, P321, P332+P313, P337+P313, P362, P391, P403+P233, P405, P501
NFPA 704 (fire diamond)
NFPA 704.svgHealth 1: Exposure would cause irritation but only minor residual injury. E.g. turpentineFlammability 0: Will not burn. E.g. waterInstability 0: Normally stable, even under fire exposure conditions, and is not reactive with water. E.g. liquid nitrogenSpecial hazards (white): no code
1
0
0
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
Yes check.svgY  verify  (what is  Yes check.svgYX mark.svgN ?)

Silver acetate is a coordination compound with the empirical formula CH3CO2Ag (or AgC2H3O2). A photosensitive, white, crystalline solid, it is a useful reagent in the laboratory as a source of silver ions lacking an oxidizing anion.

Contents

Synthesis and structure

Silver acetate can be synthesized by the reaction of acetic acid and silver carbonate. [3]

2 CH3CO2H + Ag2CO3 → 2 AgO2CCH3 + H2O + CO2

Solid silver acetate precipitates upon concentration of solutions of silver nitrate and sodium acetate.

The structure of silver acetate consists of 8-membered Ag2O4C2 rings formed by a pair of acetate ligands bridging a pair of silver centres. [4]

Reactions

Silver acetate finds use in certain transformations in organic synthesis. [5]

Sulfenamide synthesis

Silver acetate is used to prepare sulfenamides from disulfides and secondary amines: [5]

R2NH + AgOAc + (RS)2 → R2NSR + AgSR + HOAc

Hydrogenation

A solution of silver acetate in pyridine absorbs hydrogen, producing metallic silver: [6]

2 CH3CO2Ag + H2 → 2 Ag + 2 CH3CO2H

Direct ortho-arylation

Silver acetate is a reagent for direct ortho-arylation (to install two adjacent substituents on an aromatic ring) of benzylamines and N-methylbenzylamines. The reaction is palladium-catalyzed and requires a slight excess of silver acetate. [7] This reaction is shorter than previous ortho-arylation methods.

Oxidative dehalogenation

Silver acetate can be used to convert certain organohalogen compounds into alcohols. It may be used, in spite of its high cost, in instances where a mild and selective reagent is desired.

Woodward cis-hydroxylation

Silver acetate in combination with iodine forms the basis of the Woodward cis-hydroxylation. This reaction selectively converts an alkene into a cis-diol. [8]

Uses

In the health field, silver acetate-containing products have been used in gum, spray, and lozenges to deter smokers from smoking. The silver in these products, when mixed with smoke, creates an unpleasant metallic taste, thus deterring them from smoking. Lozenges containing 2.5 mg of silver acetate showed "modest efficacy" on 500 adult smokers tested over a three-month period. However, over a period of 12 months, prevention failed. In 1974, silver acetate was first introduced in Europe as an over-the-counter smoking-deterrent lozenge (Repaton) and then three years later as a chewing gum (Tabmint). [9]

Silver acetate is also a well known precursor used in printed electronics. Particularly, complexes of silver acetate have been reported to form particle free "reactive inks" that form traces that approach bulk silver conductivity (within one order of magnitude). [10]

Safety

The LD50 of silver acetate in mice is 36.7 mg/kg. Low doses of silver acetate in mice produced hyper-excitability, ataxia, central nervous system depression, labored breathing, and even death. [11] The U.S. FDA recommends that silver acetate intake be limited to 756 mg over a short period of time; excessive intake may cause argyria. [9] [12]

Related Research Articles

<span class="mw-page-title-main">Aromatic compound</span> Compound containing rings with delocalized pi electrons

Aromatic compounds, also known as "mono- and polycyclic aromatic hydrocarbons", or arenes, are organic compounds containing one or more aromatic rings. The word "aromatic" originates from the past grouping of molecules based on odor, before their general chemical properties were understood. The current definition of aromatic compounds does not have any relation to their odor. Aromatic compounds are now defined as cyclic compounds satisfying Hückel's Rule.

<span class="mw-page-title-main">Ester</span> Compound derived from an acid

In chemistry, an ester is a compound derived from an acid in which the hydrogen atom (H) of at least one acidic hydroxyl group of that acid is replaced by an organyl group. Analogues derived from oxygen replaced by other chalcogens belong to the ester category as well. According to some authors, organyl derivatives of acidic hydrogen of other acids are esters as well, but not according to the IUPAC.

<span class="mw-page-title-main">Organolithium reagent</span> Chemical compounds containing C–Li bonds

In organometallic chemistry, organolithium reagents are chemical compounds that contain carbon–lithium (C–Li) bonds. These reagents are important in organic synthesis, and are frequently used to transfer the organic group or the lithium atom to the substrates in synthetic steps, through nucleophilic addition or simple deprotonation. Organolithium reagents are used in industry as an initiator for anionic polymerization, which leads to the production of various elastomers. They have also been applied in asymmetric synthesis in the pharmaceutical industry. Due to the large difference in electronegativity between the carbon atom and the lithium atom, the C−Li bond is highly ionic. Owing to the polar nature of the C−Li bond, organolithium reagents are good nucleophiles and strong bases. For laboratory organic synthesis, many organolithium reagents are commercially available in solution form. These reagents are highly reactive, and are sometimes pyrophoric.

In chemistry, acetylation is an organic esterification reaction with acetic acid. It introduces an acetyl group into a chemical compound. Such compounds are termed acetate esters or simply acetates. Deacetylation is the opposite reaction, the removal of an acetyl group from a chemical compound.

The Heck reaction is the chemical reaction of an unsaturated halide with an alkene in the presence of a base and a palladium catalyst to form a substituted alkene. It is named after Tsutomu Mizoroki and Richard F. Heck. Heck was awarded the 2010 Nobel Prize in Chemistry, which he shared with Ei-ichi Negishi and Akira Suzuki, for the discovery and development of this reaction. This reaction was the first example of a carbon-carbon bond-forming reaction that followed a Pd(0)/Pd(II) catalytic cycle, the same catalytic cycle that is seen in other Pd(0)-catalyzed cross-coupling reactions. The Heck reaction is a way to substitute alkenes.

<span class="mw-page-title-main">Acetic anhydride</span> Organic compound with formula (CH₃CO)₂O

Acetic anhydride, or ethanoic anhydride, is the chemical compound with the formula (CH3CO)2O. Commonly abbreviated Ac2O, it is the simplest isolable anhydride of a carboxylic acid and is widely used as a reagent in organic synthesis. It is a colorless liquid that smells strongly of acetic acid, which is formed by its reaction with moisture in the air.

<span class="mw-page-title-main">Acetyl chloride</span> Organic compound (CH₃COCl)

Acetyl chloride is an acyl chloride derived from acetic acid. It belongs to the class of organic compounds called acid halides. It is a colorless, corrosive, volatile liquid. Its formula is commonly abbreviated to AcCl.

Dihydroxylation is the process by which an alkene is converted into a vicinal diol. Although there are many routes to accomplish this oxidation, the most common and direct processes use a high-oxidation-state transition metal. The metal is often used as a catalyst, with some other stoichiometric oxidant present. In addition, other transition metals and non-transition metal methods have been developed and used to catalyze the reaction.

The Kulinkovich reaction describes the organic synthesis of substituted cyclopropanols through reaction of esters with dialkyl­dialkoxy­titanium reagents, which are generated in situ from Grignard reagents containing a hydrogen in beta-position and titanium(IV) alkoxides such as titanium isopropoxide. This reaction was first reported by Oleg Kulinkovich and coworkers in 1989.

The Milas hydroxylation is an organic reaction converting an alkene to a vicinal diol, and was developed by Nicholas A. Milas in the 1930s. The cis-diol is formed by reaction of alkenes with hydrogen peroxide and either ultraviolet light or a catalytic osmium tetroxide, vanadium pentoxide, or chromium trioxide.

In organic chemistry, the Baudisch reaction is a process for the synthesis of nitrosophenols using metal ions. Although the products are of limited value, the reaction is of historical interest as an example of metal-promoted functionalization of aromatic substrates.

<span class="mw-page-title-main">Methanesulfonic anhydride</span> Chemical compound

Methanesulfonic anhydride (Ms2O) is the acid anhydride of methanesulfonic acid. Like methanesulfonyl chloride (MsCl), it may be used to generate mesylates (methanesulfonyl esters).

<span class="mw-page-title-main">Acetic acid</span> Colorless and faint organic acid found in vinegar

Acetic acid, systematically named ethanoic acid, is an acidic, colourless liquid and organic compound with the chemical formula CH3COOH. Vinegar is at least 4% acetic acid by volume, making acetic acid the main component of vinegar apart from water. It has been used, as a component of vinegar, throughout history from at least the third century BC.

<span class="mw-page-title-main">Oxaziridine</span> Chemical compound

An oxaziridine is an organic molecule that features a three-membered heterocycle containing oxygen, nitrogen, and carbon. In their largest application, oxaziridines are intermediates in the industrial production of hydrazine. Oxaziridine derivatives are also used as specialized reagents in organic chemistry for a variety of oxidations, including alpha hydroxylation of enolates, epoxidation and aziridination of olefins, and other heteroatom transfer reactions. Oxaziridines also serve as precursors to amides and participate in [3+2] cycloadditions with various heterocumulenes to form substituted five-membered heterocycles. Chiral oxaziridine derivatives effect asymmetric oxygen transfer to prochiral enolates as well as other substrates. Some oxaziridines also have the property of a high barrier to inversion of the nitrogen, allowing for the possibility of chirality at the nitrogen center.

<span class="mw-page-title-main">Catellani reaction</span>

The Catellani reaction was discovered by Marta Catellani and co-workers in 1997. The reaction uses aryl iodides to perform bi- or tri-functionalization, including C-H functionalization of the unsubstituted ortho position(s), followed a terminating cross-coupling reaction at the ipso position. This cross-coupling cascade reaction depends on the ortho-directing transient mediator, norbornene.

<span class="mw-page-title-main">MoOPH</span> Chemical compound

MoOPH, also known as oxodiperoxymolybdenum(pyridine)-(hexamethylphosphoric triamide), is a reagent used in organic synthesis. It contains a molybdenum(VI) center with multiple oxygen ligands, coordinated with pyridine and HMPA ligands. It is an electrophilic source of oxygen that reacts with enolates and related structures, and thus can be used for alpha-hydroxylation of carbonyl-containing compounds. Other reagents used for alpha-hydroxylation via enol or enolate structures include Davis oxaziridine, oxygen, and various peroxyacids. This reagent was first utilized by Edwin Vedejs as an efficient alpha-hydroxylating agent in 1974 and an effective preparative procedure was later published in 1978.

<span class="mw-page-title-main">Trifluoroacetone</span> Chemical compound

Trifluoroacetone (1,1,1-trifluoroacetone) is an organofluorine compound with the chemical formula CF3C(O)CH3. The compound is a colorless liquid with chloroform-like odour.

<span class="mw-page-title-main">(Diacetoxyiodo)benzene</span> Chemical compound

(Diacetoxyiodo)benzene, also known as phenyliodine(III) diacetate (PIDA) is a hypervalent iodine chemical with the formula C
6
H
5
I(OCOCH
3
)
2
. It is used as an oxidizing agent in organic chemistry.

<span class="mw-page-title-main">Transition metal pyridine complexes</span>

Transition metal pyridine complexes encompass many coordination complexes that contain pyridine as a ligand. Most examples are mixed-ligand complexes. Many variants of pyridine are also known to coordinate to metal ions, such as the methylpyridines, quinolines, and more complex rings.

<span class="mw-page-title-main">Chlorine-free germanium processing</span>

Chlorine-free germanium processing are methods of germanium activation to form useful germanium precursors in a more energy efficient and environmentally friendly way compared to traditional synthetic routes. Germanium tetrachloride is a valuable intermediate for the synthesis of many germanium complexes. Normal synthesis of it involves an energy-intensive dehydration of germanium oxide, , with hydrogen chloride, Due to the environmental and safety impact of non-recyclable, high energy reactions with , an alternative synthesis of a shelf-stable germanium intermediate precursor without chlorine is of interest. In 2017, a synthesis of organogermanes, without using chloride species was reported, allowing for a much more environmentally friendly and low energy synthesis using , , and even selectively activating germanium in the presence of zinc oxide, resulting in products that are bench stable and solid.

References

  1. John Rumble (June 18, 2018). CRC Handbook of Chemistry and Physics (99 ed.). CRC Press. pp. 5–189. ISBN   978-1138561632.
  2. "Silver acetate". pubchem.ncbi.nlm.nih.gov. Retrieved 15 December 2021.
  3. Logvinenko, V.; Polunina, O.; Mikhailov, Yu; Mikhailov, K.; Bokhonov, B. (2007). "Study of Thermal Decomposition of Silver Acetate". Journal of Thermal Analysis and Calorimetry. 90 (3): 813–816. doi:10.1007/s10973-006-7883-9. S2CID   96769867.
  4. Olson, Leif P.; Whitcomb, David R.; Rajeswaran, Manju; Blanton, Thomas N.; Stwertka, Barbara J. (2006). "The Simple Yet Elusive Crystal Structure of Silver Acetate and the Role of the Ag−Ag Bond in the Formation of Silver Nanoparticles during the Thermally Induced Reduction of Silver Carboxylates". Chemistry of Materials. 18 (6): 1667–1674. doi:10.1021/cm052657v.
  5. 1 2 Mary K. Balmer; Brian A. Roden; Dave G. Seapy (2008). "Silver(I) Acetate". Encyclopedia of Reagents for Organic Synthesis. doi:10.1002/047084289X.rs013m.pub2. ISBN   978-0471936237.
  6. Wright, Leon; Well, Sol; Mills, G.A. (1955). "Homogeneous Catalytic Hydrogenation III. Activation of Hydrogen by Cuprous and Silver Acetates in Pyridine and Dodecylamine". Journal of Physical Chemistry. 59 (10): 1060–1064. doi:10.1021/j150532a016.
  7. Lazareva, Anna; Daugulis, Olafs (2006). "Direct Palladium-Catalyzed Ortho-Arylation of Benzylamines". Organic Letters. 8 (23): 5211–5213. doi:10.1021/ol061919b. PMID   17078680.
  8. Woodward, R. B.; Brutcher, F. V. (January 1958). "cis-Hydroxylation of a Synthetic Steroid Intermediate with Iodine, Silver Acetate and Wet Acetic Acid". Journal of the American Chemical Society. 80 (1): 209–211. doi:10.1021/ja01534a053.
  9. 1 2 Hymowitz, Norman; Eckholdt, Haftan (1996). "Effects of a 2.5-mg Silver Acetate Lozenge on Initial and Long-Term Smoking Cessation". Journal of Preventive Medicine. 25 (5): 537–546. doi:10.1006/pmed.1996.0087. PMID   8888321.
  10. "Reactive Silver Inks for High-Performance Printed Electronics". Sigma-Aldrich. Retrieved 2019-08-11.
  11. Horner, Heidi C.; Roebuck, B.D.; Smith, Roger P.; English, Jackson P. (1977). "Acute toxicity of some silver salts of sulfonamides in mice and the efficacy of penicillamine in silver poisoning". Drug and Chemical Toxicology. 6 (3): 267–277. doi:10.3109/01480548309017817. PMID   6628259.
  12. E. J. Jensen; E. Schmidt; B. Pedersen; R. Dahl (1991). "Effect on smoking cessation of silver acetate, nicotine and ordinary chewing gum, Influence of smoking history". Psychopharmacology. 104 (4): 470–474. doi:10.1007/BF02245651. PMID   1780416. S2CID   1411297.

Further reading