Solar fuel

Last updated

A solar fuel is a synthetic chemical fuel produced from solar energy. Solar fuels can be produced through photochemical (i.e. activation of certain chemical reactions by photons), photobiological (i.e., artificial photosynthesis), and electrochemical reactions (i.e. using the electricity from solar panels to drive a chemical reaction). [1] [2] [3] [4]

Contents

Solar fuels can also be produced by thermochemical reactions (i.e., through the use of solar heat supplied by concentrated solar thermal energy to drive a chemical reaction). [5] [6]

Light is used as an energy source, with solar energy being transduced to chemical energy, typically by reducing protons to hydrogen, or carbon dioxide to organic compounds.

A solar fuel can be produced and stored for later use, when sunlight is not available, making it an alternative to fossil fuels and batteries. Examples of such fuels are hydrogen, ammonia, and hydrazine. Diverse photocatalysts are being developed to carry these reactions in a sustainable, environmentally friendly way. [7]

Overview

The world's dependence on the declining reserves of fossil fuels poses not only environmental problems but also geopolitical ones. [8] Solar fuels, in particular hydrogen, are viewed as an alternative source of energy for replacing fossil fuels especially where storage is essential. Electricity can be produced directly from sunlight through photovoltaics, but this form of energy is rather inefficient to store compared to hydrogen. [7] A solar fuel can be produced when and where sunlight is available, and stored and transported for later usage. This makes it much more convenient, because it can be used in situations where direct sunlight is not available.

The most widely researched solar fuels are hydrogen, because the only product of using this fuel is water, and products of photochemical carbon dioxide reduction, which are more conventional fuels like methane and propane. Upcoming research also involves ammonia and related substances (i.e. hydrazine). These can address the challenges that come with hydrogen, by being a more compact and safer way of storing hydrogen. Direct ammonia fuel cells are also being researched. [9]

Solar fuels can be produced via direct or indirect processes. Direct processes harness the energy in sunlight to produce a fuel without intermediary energy conversions. Solar thermochemistry uses the heat of the sun directly to heat a receiver adjacent to the solar reactor where the thermochemical process is performed. In contrast, indirect processes have solar energy converted to another form of energy first (such as biomass or electricity) that can then be used to produce a fuel. Indirect processes have been easier to implement but have the disadvantage of being less efficient than the direct method. Therefore, direct methods should be considered more interesting than their less efficient counterparts. New research therefore focusses more on this direct conversion, but also in fuels that can be used immediately to balance the power grid. [7]

Hydrogen production

Photoelectrochemical

A sample of a photoelectric cell in a lab environment. Catalysts are added to the cell, which is submerged in water and illuminated by simulated sunlight. The bubbles seen are oxygen (forming on the front of the cell) and hydrogen (forming on the back of the cell). Photo Electric Cell Evolving Hydrogen and Oxygen.jpg
A sample of a photoelectric cell in a lab environment. Catalysts are added to the cell, which is submerged in water and illuminated by simulated sunlight. The bubbles seen are oxygen (forming on the front of the cell) and hydrogen (forming on the back of the cell).

In a solar photoelectrochemical process, hydrogen can be produced by electrolysis. To use sunlight in this process, a photoelectrochemical cell can be used, where one photosensitized electrode converts light into an electric current that is then used for water splitting. One such type of cell is the dye-sensitized solar cell. [10] This is an indirect process, since it produces electricity that then is used to form hydrogen. Another indirect process using sunlight is conversion of biomass to biofuel using photosynthetic organisms; however, most of the energy harvested by photosynthesis is used in life-sustaining processes and therefore lost for energy use. [7]

A semiconductor can also be used as the photosensitizer. When a semiconductor is hit by a photon with an energy higher than the bandgap, an electron is excited to the conduction band and a hole is created in the valence band. Due to band bending, the electrons and holes move to the surface, where these charges are used to split the water molecules. Many different materials have been tested, but none so far have shown the requirements for practical application. [11]

Photochemical

In a photochemical process, the sunlight is directly used to split water into hydrogen and oxygen. Because the absorption spectrum of water does not overlap with the emission spectrum of the sun, direct dissociation of water cannot take place; a photosensitizer needs to be used. Several such catalysts have been developed as proof of concept, but not yet scaled up for commercial use; nevertheless, their relative simplicity gives the advantage of potential lower cost and increased energy conversion efficiency. [7] [12] One such proof of concept is the "artificial leaf" developed by Nocera and coworkers: a combination of metal oxide-based catalysts and a semiconductor solar cell produces hydrogen upon illumination, with oxygen as the only byproduct. [13]

Photobiological

In a photobiological process, the hydrogen is produced using photosynthetic microorganisms (green microalgae and cyanobacteria) in photobioreactors. Some of these organisms produce hydrogen upon switching culture conditions; for example, Chlamydomonas reinhardtii produces hydrogen anaerobically under sulfur deprivation, that is, when cells are moved from one growth medium to another that does not contain sulfur, and are grown without access to atmospheric oxygen. [14] Another approach was to abolish activity of the hydrogen-oxidizing (uptake) hydrogenase enzyme in the diazotrophic cyanobacterium Nostoc punctiforme , so that it would not consume hydrogen that is naturally produced by the nitrogenase enzyme in nitrogen-fixing conditions. [15] This N. punctiforme mutant could then produce hydrogen when illuminated with visible light.

Another mutant Cyanobacteria, Synechocystis, is using genes of the bacteria Rubrivivax gelatinosus CBS to produce hydrogen. The CBS bacteria produce hydrogen through the oxidation of carbon monoxide. Researchers are working to implement these genes into the Synechocystis. If these genes can be applied, it will take some effort to overcome the problems of oxygen inhibition in the production of hydrogen, but it is estimated that this process can potentially yield as much as 10% solar energy capture. This makes photobiological research a very exciting and promising branch of the hydrogen production explorations. Still the problems of overcoming the short-term nature of algal hydrogen production are many and research is in the early stages. However, this research provides a viable way to industrialize these renewable and environmental friendly processes. [16]

Thermochemical

In the solar thermochemical [17] process, water is split into hydrogen and oxygen using direct solar heat, rather than electricity, inside a high temperature solar reactor [18] which receives highly concentrated solar flux from a solar field of heliostats that focus the highly concentrated sunlight into the reactor.

The two most promising routes are the two step cerium oxide cycle and the copper chlorine hybrid cycle. For the cerium oxide cycle the first step is to strip the CeO3 into Ce2O3 at more than 1400 °C. After the thermal reduction step to reduce the metal oxide, hydrogen is then produced through hydrolysis at around 800 °C. [19] [20] The copper chloride cycle requires a lower temperature (~500°C), which makes this process more efficient, but the cycle contains more steps and is also more complex than the cerium oxide cycle. [19]

Because hydrogen manufacture requires continuous performance, the solar thermochemical process includes thermal energy storage. [21] Another thermochemical method uses solar reforming of methane, a process that replicates traditional fossil fuel reforming process but substitutes solar heat. [22]

In a November 2021 publication in Nature, Aldo Steinfeld of Swiss technological university ETH Zurich reported an artificial photosynthesis where carbon dioxide and water vapour absorbed from the air are passed over a cerium oxide catalyst heated by concentrated solar power to produce hydrogen and carbon monoxide, transformed through the Fischer-Tropsch process into complex hydrocarbons forming methanol, a liquid fuel. Scaling could produce the 414 billion L (414 million m3) of aviation fuel used in 2019 with a surface of 45,000 km2 (17,000 sq mi): 0.5% of the Sahara Desert. [23] [24] [25] One author, Philipp Furler, leads specialist Synhelion, which in 2022 was building a solar fuel production facility at Jülich, west of Cologne, before another one in Spain. [26] Swiss airlines, part of the Lufthansa Group, should become its first customer in 2023. [26]

Carbon dioxide reduction

Carbon dioxide (CO2) can be reduced to carbon monoxide (CO) and other more reduced compounds, such as methane, using the appropriate photocatalysts. One early example was the use of Tris(bipyridine)ruthenium(II) chloride (Ru(bipy)3Cl2) and cobalt chloride (CoCl2) for CO2 reduction to CO. [27] In recent years many new catalysts have been found to reduce CO2 into CO, after which the CO could be used to make hydrocarbons using for example the Fischer-Tropsch process. The most promising system for the solar-powered reduction of CO2 is the combination of a photovoltaic cell with an electrochemical cell (PV+EC). [28] [29] Using solar-driven processes, CO2 can also be converted to other products such as formate and alcohols. [30] [31]

For the photovoltaic cell the highly efficient GaInP/GaAs/Ge solar cell has been used, but many other series-connected and/or tandem (multi-junction) PV architectures can be employed to deliver the required voltage and current density to drive the CO2 reduction reactions and provide reasonable product outflow. [32] The solar cells/panels can be placed in direct contact with the electrolyzer(s), which can bring advantages in terms of system compactness and thermal management of both technologies, [32] or separately for instance by placing the PV outdoors exposed to sunlight and the EC systems protected indoors. [33]

The currently best performing electrochemical cell is the gas diffusion electrode (GED) flow cell. In which the CO2 reacts on Ag nanoparticles to produce CO. Solar to CO efficiencies of up to 19% have been reached, with minimal loss in activity after 20h. [29]

CO can also be produced without a catalyst using microwave plasma driven dissociation of CO2. This process is relatively efficient, with an electricity to CO efficiency of up to 50%, but with low conversion around 10%. These low conversions are not ideal, because CO and CO2 are hard to separate at large scale in a efficient manner. The big upside of this process is that it can be turned off and on quite rapidly and does not use scarce materials. The (weakly ionised) plasma is produced using microwaves, these microwaves can accelerate the free electrons in the plasma. These electrons interact with the CO2 which vibrationally excite the CO2, this leads to dissociation of the CO2 to CO. The excitation and dissociation happens fast enough that only a little bit of the energy is converted to heat, which keeps the efficiency high. The dissociation also produces an oxygen radical, which reacts with CO2 to CO and O2. [34]

Also in this case, the use of microorganisms has been explored. Using genetic engineering and synthetic biology techniques, parts of or whole biofuel-producing metabolic pathways can be introduced in photosynthetic organisms. One example is the production of 1-butanol in Synechococcus elongatus using enzymes from Clostridium acetobutylicum , Escherichia coli and Treponema denticola . [35] One example of a large-scale research facility exploring this type of biofuel production is the AlgaePARC in the Wageningen University and Research Centre, Netherlands.

Ammonia and hydrazine production

Hydrogen rich substances as ammonia and hydrazine are great for storing hydrogen. This is due to their energy density, for ammonia at least 1.3 times that of liquid hydrogen. [36] Hydrazine is almost twice as dense in energy compared to liquid hydrogen, however a downside is that dilution is required in the use of direct hydrazine fuel cells, which lowers the overall power one can get from this fuel cell. Besides the high volumetric density, ammonia and hydrous hydrazine have a low flammability, which makes it superior to hydrogen by lowering the storage and transportation costs. [37]

Ammonia

Direct ammonia fuel cells are researched for this exact reason and new studies presented a new integrated solar-based ammonia synthesis and fuel cell. The solar base follows from excess solar power that is used to synthesize ammonia. This is done by using an ammonia electrolytic cell (AEC) in combination with a proton exchange membrane (PEM) fuel cell. When a dip in solar power occurs, a direct ammonia fuel cell kicks into action providing the lacking energy. This recent research (2020) is a clear example of efficient use of energy, which is essentially done by temporary storage and use of ammonia as a fuel. Storage of energy in ammonia does not degrade over time, which is the case with batteries and flywheels. This provides long-term energy storage. This compact form of energy has the additional advantage that excess energy can easily be transported to other locations. [9] This needs to be done with high safety measures due to the toxicity of ammonia for humans. Further research needs to be done to complement this system with wind energy and hydro-power plants to create a hybrid system to limit the interruptions in power supply. It is necessary to also investigate on the economic performance of the proposed system. Some scientists envision a new ammonia economy that is almost the same as the oil industry, but with the enormous advantage of inexhaustible carbon-free power. [38] This so called green ammonia is considered as a potential fuel for super large ships. South Korean shipbuilder DSME plans on commercializing these ships by 2025. [39]

Hydrazine

Another way of storing energy is with the use of hydrazine. This molecule is related to ammonia and has the potential to be equally as useful as ammonia. It can be created from ammonia and hydrogen peroxide or via chlorine based oxidations. [40] This makes it an even denser energy storing fuel. The downside of hydrazine is that it is very toxic and that it will react with oxygen quite violently. This makes it an ideal fuel for oxygen low area's such as space. Recent launched Iridium NEXT satellites have hydrazine as their source of energy. [41] However toxic, this fuel has great potential, because safety measures can be increased sufficiently to safely transport and convert hydrazine back into hydrogen and ammonia. Researchers discovered a way to decompose hydrazine with a photo catalysis system that works over the entire visible-light region. This means that sunlight can not only be used to produce hydrazine, but also to produce hydrogen from this fuel. The decomposition of hydrazine is done with a p-n bilayer consisting of fullerene (C60), also known as "buckeyballs" which is a n-type semiconductor and zinc phthalocyanine (ZnPc) which is a p-type semiconductor creating an organic photo catalysis system. This system uses visible light irradiation to excite electrons to the n-type semiconductor creating an electric current. The holes created in the p-type semiconductor are forced in the direction of the so called Nafion part of the device, which oxidizes hydrazine to nitrogen gas and dissolved hydrogen ions. This was done in the first compartment of the fuel cell. The hydrogen ions travel through a salt bridge to another compartment to be reduced to hydrogen gas by the electrons, gained by the interaction with light, from the first compartment. Thus creating hydrogen, which can be used in fuel cells. [42] This promising studies shows that hydrazine is a solar fuel that has great potential to become very useful in the energy transition.

A different approach to hydrazine are the direct fuel cells. The concepts for these cells have been developed since the 1960s. [43] [44] Recent studies provide much better direct hydrazine fuel cells, for example with the use of hydrogen peroxide as an oxidant. Making the anode basic and the cathode acidic increased the power density a lot, showing high peaks of around 1 W/cm2 at a temperature of 80 degrees Celsius. As mentioned earlier the main weakness of direct hydrazine fuel cells is the high toxicity of hydrazine and its derivatives. [37] However hydrous hydrazine, which is a water-like liquid retains the high hydrogen density and can be stored and transported safely using the existing fuel infrastructure. [45] Researchers also aim for self-powered fuel cells involving hydrazine. These fuel cells make use of hydrazine in two ways, namely as the fuel for a direct fuel cell and as the splitting target. This means that one only needs hydrazine to produce hydrogen with this fuel cell, so no external power is needed. This is done with the use of iron doped cobalt sulfide nanosheets. The doping with iron decreases the free-energy changes of hydrogen adsorption and hydrazine dehydrogenation. This method has a 20 hour stability and 98% Faradaic efficiency, which is comparable with the best reported claims of self-powered hydrogen generating cells. [46]

Other applications

See also

Related Research Articles

<span class="mw-page-title-main">Photosynthesis</span> Biological process to convert light into chemical energy

Photosynthesis is a biological process used by many cellular organisms to convert light energy into chemical energy, which is stored in organic compounds that can later be metabolized through cellular respiration to fuel the organism's activities. The term usually refers to oxygenic photosynthesis, where oxygen is produced as a byproduct and some of the chemical energy produced is stored in carbohydrate molecules such as sugars, starch, glycogen and cellulose, which are synthesized from endergonic reaction of carbon dioxide with water. Most plants, algae and cyanobacteria perform photosynthesis; such organisms are called photoautotrophs. Photosynthesis is largely responsible for producing and maintaining the oxygen content of the Earth's atmosphere, and supplies most of the biological energy necessary for complex life on Earth.

Syngas, or synthesis gas, is a mixture of hydrogen and carbon monoxide, in various ratios. The gas often contains some carbon dioxide and methane. It is principally used for producing ammonia or methanol. Syngas is combustible and can be used as a fuel. Historically, it has been used as a replacement for gasoline, when gasoline supply has been limited; for example, wood gas was used to power cars in Europe during WWII.

<span class="mw-page-title-main">Chemosynthesis</span> Biological process building organic matter using inorganic compounds as the energy source

In biochemistry, chemosynthesis is the biological conversion of one or more carbon-containing molecules and nutrients into organic matter using the oxidation of inorganic compounds or ferrous ions as a source of energy, rather than sunlight, as in photosynthesis. Chemoautotrophs, organisms that obtain carbon from carbon dioxide through chemosynthesis, are phylogenetically diverse. Groups that include conspicuous or biogeochemically important taxa include the sulfur-oxidizing Gammaproteobacteria, the Campylobacterota, the Aquificota, the methanogenic archaea, and the neutrophilic iron-oxidizing bacteria.

<span class="mw-page-title-main">Hydrogen economy</span> Using hydrogen to decarbonize sectors which are hard to electrify

The hydrogen economy is an umbrella term that draws together the roles hydrogen can play alongside low-carbon electricity to decarbonize those sectors and activities which may be technically difficult to decarbonize through other means, or where cheaper and more energy-efficient clean solutions are not available. In this context, hydrogen economy encompasses hydrogen's production through to end-uses in ways that substantively contribute to phasing-out fossil fuels and limiting climate change.

<span class="mw-page-title-main">High-temperature electrolysis</span> Technique for producing hydrogen from water

High-temperature electrolysis is a technology for producing hydrogen from water at high temperatures or other products, such as iron or carbon nanomaterials as higher energy lowers needed electricity to split molecule and opens up new, potentially better electrolytes like molten salts or hydroxides.

<span class="mw-page-title-main">Sabatier reaction</span> Methanation process of carbon dioxide with hydrogen

The Sabatier reaction or Sabatier process produces methane and water from a reaction of hydrogen with carbon dioxide at elevated temperatures and pressures in the presence of a nickel catalyst. It was discovered by the French chemists Paul Sabatier and Jean-Baptiste Senderens in 1897. Optionally, ruthenium on alumina makes a more efficient catalyst. It is described by the following exothermic reaction:

Artificial photosynthesis is a chemical process that biomimics the natural process of photosynthesis to convert sunlight, water, and carbon dioxide into carbohydrates and oxygen. The term artificial photosynthesis is commonly used to refer to any scheme for capturing and storing the energy from sunlight in the chemical bonds of a fuel. Photocatalytic water splitting converts water into hydrogen and oxygen and is a major research topic of artificial photosynthesis. Light-driven carbon dioxide reduction is another process studied that replicates natural carbon fixation.

<span class="mw-page-title-main">Water splitting</span> Chemical reaction

Water splitting is the chemical reaction in which water is broken down into oxygen and hydrogen:

<span class="mw-page-title-main">Methanol economy</span>

The methanol economy is a suggested future economy in which methanol and dimethyl ether replace fossil fuels as a means of energy storage, ground transportation fuel, and raw material for synthetic hydrocarbons and their products. It offers an alternative to the proposed hydrogen economy or ethanol economy, although these concepts are not exclusive. Methanol can be produced from a variety of sources including fossil fuels as well as agricultural products and municipal waste, wood and varied biomass. It can also be made from chemical recycling of carbon dioxide.

Solar chemical refers to a number of possible processes that harness solar energy by absorbing sunlight in a chemical reaction. The idea is conceptually similar to photosynthesis in plants, which converts solar energy into the chemical bonds of glucose molecules, but without using living organisms, which is why it is also called artificial photosynthesis.

The photosynthetic efficiency is the fraction of light energy converted into chemical energy during photosynthesis in green plants and algae. Photosynthesis can be described by the simplified chemical reaction

Microbial metabolism is the means by which a microbe obtains the energy and nutrients it needs to live and reproduce. Microbes use many different types of metabolic strategies and species can often be differentiated from each other based on metabolic characteristics. The specific metabolic properties of a microbe are the major factors in determining that microbe's ecological niche, and often allow for that microbe to be useful in industrial processes or responsible for biogeochemical cycles.

Hydrogen gas is produced by several industrial methods. Fossil fuels are the dominant source of hydrogen. As of 2020, the majority of hydrogen (~95%) is produced by steam reforming of natural gas and other light hydrocarbons, and partial oxidation of heavier hydrocarbons. Other methods of hydrogen production include biomass gasification and methane pyrolysis. Methane pyrolysis and water electrolysis can use any source of electricity including renewable energy.

<span class="mw-page-title-main">Biohydrogen</span> Hydrogen that is produced biologically

Biohydrogen is H2 that is produced biologically. Interest is high in this technology because H2 is a clean fuel and can be readily produced from certain kinds of biomass, including biological waste. Furthermore some photosynthetic microorganisms are capable to produce H2 directly from water splitting using light as energy source.

<span class="mw-page-title-main">Autotroph</span> Organism type

An autotroph is an organism that produces complex organic compounds using carbon from simple substances such as carbon dioxide, generally using energy from light (photosynthesis) or inorganic chemical reactions (chemosynthesis). They convert an abiotic source of energy into energy stored in organic compounds, which can be used by other organisms. Autotrophs do not need a living source of carbon or energy and are the producers in a food chain, such as plants on land or algae in water. Autotrophs can reduce carbon dioxide to make organic compounds for biosynthesis and as stored chemical fuel. Most autotrophs use water as the reducing agent, but some can use other hydrogen compounds such as hydrogen sulfide.

Carbon-neutral fuel is fuel which produces no net-greenhouse gas emissions or carbon footprint. In practice, this usually means fuels that are made using carbon dioxide (CO2) as a feedstock. Proposed carbon-neutral fuels can broadly be grouped into synthetic fuels, which are made by chemically hydrogenating carbon dioxide, and biofuels, which are produced using natural CO2-consuming processes like photosynthesis.

Power-to-gas is a technology that uses electric power to produce a gaseous fuel. When using surplus power from wind generation, the concept is sometimes called windgas.

E-diesel is a synthetic diesel fuel created by Audi for use in automobiles. Currently, e-diesel is created by an Audi research facility in partnership with a company named Sunfire. The fuel is created from carbon dioxide, water, and electricity with a process powered by renewable energy sources to create a liquid energy carrier called blue crude which is then refined to generate e-diesel. E-diesel is considered to be a carbon-neutral fuel as it does not extract new carbon and the energy sources to drive the process are from carbon-neutral sources. As of April 2015, an Audi A8 driven by Federal Minister of Education and Research in Germany is using the e-diesel fuel.

The Bionic Leaf is a biomimetic system that gathers solar energy via photovoltaic cells that can be stored or used in a number of different functions. Bionic leaves can be composed of both synthetic and organic materials (bacteria), or solely made of synthetic materials. The Bionic Leaf has the potential to be implemented in communities, such as urbanized areas to provide clean air as well as providing needed clean energy.

Solar reforming is the sunlight-driven conversion of diverse carbon waste resources into sustainable fuels and value-added chemicals. It encompasses a set of technologies operating under ambient and aqueous conditions, utilizing solar spectrum to generate maximum value. Solar reforming offers an attractive and unifying solution to address the contemporary challenges of climate change and environmental pollution by creating a sustainable circular network of waste upcycling, clean fuel generation and the consequent mitigation of greenhouse emissions.

References

  1. "Sunshine to Petrol" (PDF). Sandia National Laboratories. Retrieved 11 April 2013.
  2. "Integrated Solar Thermochemical Reaction System". U.S. Department of Energy. Retrieved 11 April 2013.
  3. Matthew L. Wald (10 April 2013). "New Solar Process Gets More Out of Natural Gas". The New York Times. Retrieved 11 April 2013.
  4. Solar Fuels and Artificial Photosynthesis, Nobel Laureate Professor Alan Heeger, RSC 2012
  5. Rodat, Sylvain; Abanades, Stéphane; Boujjat, Houssame; Chuayboon, Srirat (1 October 2020). "On the path toward day and night continuous solar high temperature thermochemical processes: A review". Renewable and Sustainable Energy Reviews. 132: 110061. doi: 10.1016/j.rser.2020.110061 . ISSN   1364-0321. S2CID   221803670.
  6. Chen, Jing; Kong, Hui; Wang, Hongsheng (1 August 2023). "A novel high-efficiency solar thermochemical cycle for fuel production based on chemical-looping cycle oxygen removal". Applied Energy. 343: 121161. Bibcode:2023ApEn..34321161C. doi:10.1016/j.apenergy.2023.121161. ISSN   0306-2619. S2CID   258670374.
  7. 1 2 3 4 5 Styring, Stenbjörn (21 December 2011). "Artificial photosynthesis for solar fuels". Faraday Discussions. 155 (Advance Article): 357–376. Bibcode:2012FaDi..155..357S. doi:10.1039/C1FD00113B. PMID   22470985.
  8. Hammarström, Leif; Hammes-Schiffer, Sharon (21 December 2009). "Artificial Photosynthesis and Solar Fuels". Accounts of Chemical Research. 42 (12): 1859–1860. doi:10.1021/ar900267k. PMID   20020780 . Retrieved 26 January 2012.
  9. 1 2 Siddiqui, O.; Dincer, I. (15 March 2020). "A new solar energy system for ammonia production and utilization in fuel cells". Energy Conversion and Management. 208: 112590. doi:10.1016/j.enconman.2020.112590. ISSN   0196-8904. S2CID   212786926.
  10. Kalyanasundaram, K.; Grätzel, M. (June 2010). "Artificial photosynthesis: biomimetic approaches to solar energy conversion and storage". Current Opinion in Biotechnology. 21 (3): 298–310. doi:10.1016/j.copbio.2010.03.021. PMID   20439158.
  11. Balzani, Vincenzo; Pacchioni, Gianfranco; Prato, Maurizio; Zecchina, Adriano (1 September 2019). "Solar-driven chemistry: towards new catalytic solutions for a sustainable world". Rendiconti Lincei. Scienze Fisiche e Naturali. 30 (3): 443–452. doi: 10.1007/s12210-019-00836-2 . hdl: 10281/260088 . ISSN   1720-0776.
  12. Andreiadis, Eugen S.; Chavarot-Kerlidou, Murielle; Fontecave, Marc; Artero, Vincent (September–October 2011). "Artificial Photosynthesis: From Molecular Catalysts for Light-driven Water Splitting to Photoelectrochemical Cells". Photochemistry and Photobiology. 87 (5): 946–964. doi: 10.1111/j.1751-1097.2011.00966.x . PMID   21740444.
  13. Reece, Steven Y.; Hamel, Jonathan A.; Sung, Kimberly; Jarvi, Thomas D.; Esswein, Arthur J.; Pijpers, Joep J. H.; Nocera, Daniel G. (4 November 2011). "Wireless Solar Water Splitting Using Silicon-Based Semiconductors and Earth-Abundant Catalysts". Science. 334 (6056): 645–648. Bibcode:2011Sci...334..645R. doi:10.1126/science.1209816. PMID   21960528. S2CID   12720266.
  14. Kosourov, Sergey; Tsygankov, Anatoly; Seibert, Michael; Ghirardi, Maria L. (30 June 2002). "Sustained hydrogen photoproduction by Chlamydomonas reinhardtii: Effects of culture parameters". Biotechnology and Bioengineering. 78 (7): 731–740. doi:10.1002/bit.10254. PMID   12001165.
  15. Lindberg, Pia; Schûtz, Kathrin; Happe, Thomas; Lindblad, Peter (November–December 2002). "A hydrogen-producing, hydrogenase-free mutant strain of Nostoc punctiforme ATCC 29133". International Journal of Hydrogen Energy. 27 (11–12): 1291–1296. doi:10.1016/S0360-3199(02)00121-0.
  16. Williams, T.; Remick, R. and Ghirardi, M. (2007-11) "Photobiological Production of Hydrogen" National Renewable Energy Laboratory. Retrieved on 2020-01-25
  17. Steinfeld, Aldo (2005). "Solar Thermochemical Production of Hydrogen". Solar thermochemical production of hydrogen—A review. pp. 421–443. CiteSeerX   10.1.1.703.9035 .
  18. "Fabrication and testing of CONTISOL: A new receiver-reactor for day and night solar thermochemistry" (PDF). SolarPACES.
  19. 1 2 3 "Hydrogen Production: Thermochemical Water Splitting". Energy.gov. Retrieved 25 January 2021.
  20. Abanades, Stéphane; Flamant, Gilles (2006). "Thermochemical hydrogen production from a two-step solar-driven water-splitting cycle based on cerium oxides". Solar Energy. 80 (12): 1611–1623. Bibcode:2006SoEn...80.1611A. doi:10.1016/j.solener.2005.12.005.
  21. "How CSP's Thermal Energy Storage Works". SolarPACES. 10 November 2017.
  22. "Solar Reforming of Natural Gas". University of Adelaide.
  23. "Plucking aircraft fuel from thin air" . The Economist. 3 November 2021.
  24. Remo Schäppi; David Rutz; Fabian Dähler; Alexander Muroyama; Philipp Haueter; Johan Lilliestam; Anthony Patt; Philipp Furler; Aldo Steinfeld (3 November 2021). "Drop-in Fuels from Sunlight and Air" . Nature. 601 (7891): 63–68. doi:10.1038/s41586-021-04174-y. hdl: 20.500.11850/515596 . PMID   34732875. S2CID   242944503.
  25. NPG Press (2 November 2021). Fuels from sunlight and air. youtube.
  26. 1 2 David Kaminski-Morrow (1 March 2022). "Swiss to pioneer sun-to-liquid kerosene flights next year". FlightGlobal.
  27. Lehn, Jean-Marie; Ziessel, Raymond (January 1982). "Photochemical generation of carbon monoxide and hydrogen by reduction of carbon dioxide and water under visible light irradiation". Proceedings of the National Academy of Sciences. 79 (2): 701–704. Bibcode:1982PNAS...79..701L. doi: 10.1073/pnas.79.2.701 . PMC   345815 . PMID   16593151.
  28. Fukuzumi, Shunichi (20 December 2017). "Production of Liquid Solar Fuels and Their Use in Fuel Cells". Joule. 1 (4): 689–738. doi: 10.1016/j.joule.2017.07.007 . ISSN   2542-4351.
  29. 1 2 He, Jie; Janáky, Csaba (12 June 2020). "Recent Advances in Solar-Driven Carbon Dioxide Conversion: Expectations versus Reality". ACS Energy Letters. 5 (6): 1996–2014. doi:10.1021/acsenergylett.0c00645. PMC   7296618 . PMID   32566753.
  30. Rahaman, Motiar; Andrei, Virgil; Wright, Demelza; Lam, Erwin; Pornrungroj, Chanon; Bhattacharjee, Subhajit; Pichler, Christian M.; Greer, Heather F.; Baumberg, Jeremy J.; Reisner, Erwin (June 2023). "Solar-driven liquid multi-carbon fuel production using a standalone perovskite–BiVO4 artificial leaf". Nature Energy. 8 (6): 629–638. doi:10.1038/s41560-023-01262-3. ISSN   2058-7546. S2CID   258822027.
  31. Edwardes Moore, Esther; Andrei, Virgil; Oliveira, Ana Rita; Coito, Ana Margarida; Pereira, Inês A. C.; Reisner, Erwin (6 December 2021). "A Semi-artificial Photoelectrochemical Tandem Leaf with a CO 2 -to-Formate Efficiency Approaching 1 %". Angewandte Chemie International Edition. 60 (50): 26303–26307. doi:10.1002/anie.202110867. ISSN   1433-7851. PMID   34472692. S2CID   237389539.
  32. 1 2 Lourenço, A.C.; Reis-Machado, A.S.; Fortunato, E.; Martins, R.; Mendes, M.J. (2020). "Sunlight-driven CO2-to-fuel conversion: Exploring thermal and electrical coupling between photovoltaic and electrochemical systems for optimum solar-methane production". Materials Today Energy. 17: 100425. doi:10.1016/j.mtener.2020.100425. hdl: 10362/97472 . S2CID   226193710.
  33. Vieira, F.; Sarmento, B.; Reis-Machado, A. S.; Facão, J.; Carvalho, M. J.; Mendes, M. J.; Fortunato, E.; Martins, R. (1 December 2019). "Prediction of sunlight-driven CO2 conversion: Producing methane from photovoltaics, and full system design for single-house application". Materials Today Energy. 14: 100333. doi:10.1016/j.mtener.2019.07.004. hdl: 10400.9/3203 . ISSN   2468-6069. S2CID   203084604.
  34. Goede, Adelbert P. H.; Bongers, Waldo A.; Graswinckel, Martijn F.; Sanden, Richard M. C. M. van de; Leins, Martina; Kopecki, Jochen; Schulz, Andreas; Walker, Mathias (2014). "Production of solar fuels by CO2 plasmolysis". EPJ Web of Conferences. 79: 01005. Bibcode:2014EPJWC..7901005G. doi: 10.1051/epjconf/20137901005 . ISSN   2100-014X.
  35. Lan, Ethan I.; Liao, James C. (July 2011). "Metabolic engineering of cyanobacteria for 1-butanol production from carbon dioxide". Metabolic Engineering. 13 (4): 353–363. doi:10.1016/j.ymben.2011.04.004. PMID   21569861.
  36. Lan, Rong; Tao, Shanwen (2014). "Ammonia as a Suitable Fuel for Fuel Cells". Frontiers in Energy Research. 2. doi: 10.3389/fenrg.2014.00035 . ISSN   2296-598X.
  37. 1 2 Soloveichik, Grigorii L. (29 August 2014). "Liquid fuel cells". Beilstein Journal of Nanotechnology. 5 (1): 1399–1418. doi:10.3762/bjnano.5.153. ISSN   2190-4286. PMC   4168903 . PMID   25247123.
  38. Service, Robert F. (12 July 2018). "Ammonia—a renewable fuel made from sun, air, and water—could power the globe without carbon". Science. doi:10.1126/science.aau7489. S2CID   240364276 . Retrieved 25 January 2021.
  39. "DSME gets LR AIP for ammonia-fueled 23,000 TEU boxship". Offshore Energy. 6 October 2020. Retrieved 25 January 2021.
  40. Schirmann, Jean-Pierre; Bourdauducq, Paul (2001), "Hydrazine", Ullmann's Encyclopedia of Industrial Chemistry, American Cancer Society, doi:10.1002/14356007.a13_177, ISBN   978-3-527-30673-2 , retrieved 25 January 2021
  41. "Hydrazine - Toxic for humans, but satellites love it". Iridium Satellite Communications. 20 June 2017. Retrieved 25 January 2021.
  42. Abe, Toshiyuki; Taira, Naohiro; Tanno, Yoshinori; Kikuchi, Yuko; Nagai, Keiji (28 January 2014). "Decomposition of hydrazine by an organic fullerene–phthalocyanine p–n bilayer photocatalysis system over the entire visible-light region". Chemical Communications. 50 (16): 1950–1952. doi:10.1039/C3CC46701E. ISSN   1364-548X. PMID   24409454.
  43. Karp, Stewart.; Meites, Louis. (1 March 1962). "The Voltammetric Characteristics and Mechanism of Electroöxidation of Hydrazine". Journal of the American Chemical Society. 84 (6): 906–912. doi:10.1021/ja00865a006. ISSN   0002-7863.
  44. Evans, George E.; Kordesch, Karl V. (1 December 1967). "Hydrazine-Air Fuel Cells: Hydrazine-air fuel cells emerge from the laboratory". Science. 158 (3805): 1148–1152. doi:10.1126/science.158.3805.1148. ISSN   0036-8075. PMID   6057287. S2CID   32643244.
  45. Fukuzumi, Shunichi (20 December 2017). "Production of Liquid Solar Fuels and Their Use in Fuel Cells". Joule. 1 (4): 689–738. doi: 10.1016/j.joule.2017.07.007 . ISSN   2542-4785.
  46. Liu, Xijun; He, Jia; Zhao, Shunzheng; Liu, Yunpeng; Zhao, Zhe; Luo, Jun; Hu, Guangzhi; Sun, Xiaoming; Ding, Yi (19 October 2018). "Self-powered H 2 production with bifunctional hydrazine as sole consumable". Nature Communications. 9 (1): 4365. Bibcode:2018NatCo...9.4365L. doi:10.1038/s41467-018-06815-9. ISSN   2041-1723. PMC   6195518 . PMID   30341311.
  47. Herron, Jeffrey A.; Kim, Jiyong; Upadhye, Aniruddha A.; Huber, George W.; Maravelias, Christos T. (2015). "A general framework for the assessment of solar fuel technologies". Energy & Environmental Science. 8: 126–157. doi:10.1039/C4EE01958J.
  48. Kalamaras, Christos M.; Efstathiou, Angelos M. (6 June 2013). "Hydrogen Production Technologies: Current State and Future Developments". Conference Papers in Energy. 2013: 1–9. doi: 10.1155/2013/690627 .
  49. Guo, Yujing; Li, Gendi; Zhou, Junbo; Liu, Yong (13 December 2019). "Comparison between hydrogen production by alkaline water electrolysis and hydrogen production by PEM electrolysis". IOP Conference Series: Earth and Environmental Science. 371 (4): 042022. Bibcode:2019E&ES..371d2022G. doi: 10.1088/1755-1315/371/4/042022 .
  50. Matt Egan (19 November 2019). "Secretive energy startup backed by Bill Gates achieves solar breakthrough". CNN. Retrieved 24 March 2023.
  51. Perret, R. (2011) "Solar Thermochemical Hydrogen Production Research (STCH)" Sandia National Laboratories Retrieved 25 Januari 2021