Tetrakis(dimethylamido)titanium

Last updated
Tetrakis(dimethylamino)titanium
(IV)
Ti(NMe2)4.png
Names
Preferred IUPAC name
Tetrakis(dimethylamino)titanium(IV)
Systematic IUPAC name
Dimethyl[tris(dimethylamino)titanio]amine
Other names
Titanium(IV) dimethylamide
Identifiers
3D model (JSmol)
AbbreviationsTDMAT
ChemSpider
ECHA InfoCard 100.019.914 OOjs UI icon edit-ltr-progressive.svg
EC Number
  • 221-904-3
PubChem CID
UN number 2924

3398

  • InChI=1S/4C2H6N.Ti/c4*1-3-2;/h4*1-2H3;/q4*-1;+4 Yes check.svgY
    Key: MNWRORMXBIWXCI-UHFFFAOYSA-N Yes check.svgY
  • InChI=1S/4C2H6N.Ti/c4*1-3-2;/h4*1-2H3;/q4*-1;+4
    Key: MNWRORMXBIWXCI-UHFFFAOYSA-N
  • CN(C)[Ti](N(C)C)(N(C)C)N(C)C
Properties
C8H24N4Ti
Molar mass 224.19 g/mol
Appearanceyellow liquid
Density 0.947 g/cm3
Boiling point 50 °C (122 °F; 323 K) at 0.05 mmHg
reacts with water
Hazards
GHS labelling: [1]
GHS-pictogram-flamme.svg GHS-pictogram-acid.svg
Danger
H225, H260, H314
P210, P223, P231+P232, P280, P303+P361+P353, P305+P351+P338
NFPA 704 (fire diamond)
NFPA 704.svgHealth 3: Short exposure could cause serious temporary or residual injury. E.g. chlorine gasFlammability 3: Liquids and solids that can be ignited under almost all ambient temperature conditions. Flash point between 23 and 38 °C (73 and 100 °F). E.g. gasolineInstability 2: Undergoes violent chemical change at elevated temperatures and pressures, reacts violently with water, or may form explosive mixtures with water. E.g. white phosphorusSpecial hazards (white): no code
3
3
2
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
X mark.svgN  verify  (what is  Yes check.svgYX mark.svgN ?)

Tetrakis(dimethylamino)titanium (TDMAT), also known as Titanium(IV) dimethylamide, is a chemical compound. The compound is generally classified as a metalorganic species, meaning that its properties are strongly influenced by the organic ligands but the compound lacks metal-carbon bonds. It is used in chemical vapor deposition to prepare titanium nitride (TiN) surfaces and in atomic layer deposition as a titanium dioxide precursor. The prefix "tetrakis" refers the presence of four of the same ligand, in this case dimethylamides.

Contents

Preparation and properties

Tetrakis(dimethylamino)titanium is a conventional Ti(IV) compound in the sense that it is tetrahedral and diamagnetic. Unlike the many alkoxides, the diorganoamides of titanium are monomeric and thus at least somewhat volatile. It is prepared from titanium tetrachloride (which is also tetrahedral, diamagnetic, and volatile) by treatment with lithium dimethylamide: [2]

TiCl4 + 4 LiNMe2 → Ti(NMe2)4 + 4 LiCl

Like many amido complexes, TDMAT is quite sensitive toward water, and its handling requires air-free techniques. The ultimate products of its hydrolysis is titanium dioxide and dimethylamine:

Ti(NMe2)4 + 2 H2O → TiO2 + 4 HNMe2

In a related reaction, the compound undergoes exchange with other amines, evolving dimethylamine.

See also

Related Research Articles

<span class="mw-page-title-main">Organometallic chemistry</span> Study of organic compounds containing metal(s)

Organometallic chemistry is the study of organometallic compounds, chemical compounds containing at least one chemical bond between a carbon atom of an organic molecule and a metal, including alkali, alkaline earth, and transition metals, and sometimes broadened to include metalloids like boron, silicon, and selenium, as well. Aside from bonds to organyl fragments or molecules, bonds to 'inorganic' carbon, like carbon monoxide, cyanide, or carbide, are generally considered to be organometallic as well. Some related compounds such as transition metal hydrides and metal phosphine complexes are often included in discussions of organometallic compounds, though strictly speaking, they are not necessarily organometallic. The related but distinct term "metalorganic compound" refers to metal-containing compounds lacking direct metal-carbon bonds but which contain organic ligands. Metal β-diketonates, alkoxides, dialkylamides, and metal phosphine complexes are representative members of this class. The field of organometallic chemistry combines aspects of traditional inorganic and organic chemistry.

<span class="mw-page-title-main">Transition metal alkoxide complex</span> Conjugate base of an alcohol

A transition metal alkoxide complex is a kind of coordination complex containing one or more alkoxide ligands, written as RO, where R is the organic substituent. Metal alkoxides are used for coatings and as catalysts.

<span class="mw-page-title-main">Titanium tetrachloride</span> Inorganic chemical compound

Titanium tetrachloride is the inorganic compound with the formula TiCl4. It is an important intermediate in the production of titanium metal and the pigment titanium dioxide. TiCl4 is a volatile liquid. Upon contact with humid air, it forms thick clouds of titanium dioxide and hydrochloric acid, a reaction that was formerly exploited for use in smoke machines. It is sometimes referred to as “tickle” or “tickle 4”, as a phonetic representation of the symbols of its molecular formula.

<span class="mw-page-title-main">Trimethylaluminium</span> Chemical compound

Trimethylaluminium is one of the simplest examples of an organoaluminium compound. Despite its name it has the formula Al2(CH3)6 (abbreviated as Al2Me6 or TMA), as it exists as a dimer. This colorless liquid is pyrophoric. It is an industrially important compound, closely related to triethylaluminium.

<span class="mw-page-title-main">Dimethylamine</span> Chemical compound

Dimethylamine is an organic compound with the formula (CH3)2NH. This secondary amine is a colorless, flammable gas with an ammonia-like odor. Dimethylamine is commonly encountered commercially as a solution in water at concentrations up to around 40%. An estimated 270,000 tons were produced in 2005.

<span class="mw-page-title-main">Hafnium tetrachloride</span> Chemical compound

Hafnium(IV) chloride is the inorganic compound with the formula HfCl4. This colourless solid is the precursor to most hafnium organometallic compounds. It has a variety of highly specialized applications, mainly in materials science and as a catalyst.

<span class="mw-page-title-main">Metalorganic vapour-phase epitaxy</span> Method of producing thin films (polycrystalline and single crystal)

Metalorganic vapour-phase epitaxy (MOVPE), also known as organometallic vapour-phase epitaxy (OMVPE) or metalorganic chemical vapour deposition (MOCVD), is a chemical vapour deposition method used to produce single- or polycrystalline thin films. It is a process for growing crystalline layers to create complex semiconductor multilayer structures. In contrast to molecular-beam epitaxy (MBE), the growth of crystals is by chemical reaction and not physical deposition. This takes place not in vacuum, but from the gas phase at moderate pressures. As such, this technique is preferred for the formation of devices incorporating thermodynamically metastable alloys, and it has become a major process in the manufacture of optoelectronics, such as Light-emitting diodes. It was invented in 1968 at North American Aviation Science Center by Harold M. Manasevit.

<span class="mw-page-title-main">Titanium tetrabromide</span> Chemical compound

Titanium tetrabromide is the chemical compound with the formula TiBr4. It is the most volatile transition metal bromide. The properties of TiBr4 are an average of TiCl4 and TiI4. Some key properties of these four-coordinated Ti(IV) species are their high Lewis acidity and their high solubility in nonpolar organic solvents. TiBr4 is diamagnetic, reflecting the d0 configuration of the metal centre.

<span class="mw-page-title-main">Borohydride</span>

Borohydride refers to the anion [BH4], which is also called tetrahydridoborate, and its salts. Borohydride or hydroborate is also the term used for compounds containing [BH4−nXn], where n is an integer from 0 to 3, for example cyanoborohydride or cyanotrihydroborate [BH3(CN)] and triethylborohydride or triethylhydroborate [BH(CH2CH3)3]. Borohydrides find wide use as reducing agents in organic synthesis. The most important borohydrides are lithium borohydride and sodium borohydride, but other salts are well known. Tetrahydroborates are also of academic and industrial interest in inorganic chemistry.

Metal-organic compounds are a class of chemical compounds that contain metals and organic ligands, but lacking direct metal-carbon bonds. Metal β-diketonates, metal alkoxides, metal dialkylamides, transition metal carboxylate complexes, metal acetylacetonates, and metal phosphine complexes are representative members of this class. Some of metal-organic compounds confer solubility in organic solvents or volatility. Compounds with these properties find applications in materials science for metal organic vapor deposition (MOCVD) or sol-gel processing. Precise definitions of metal-organic compound may vary, however the term may describe:

<span class="mw-page-title-main">Titanium isopropoxide</span> Chemical compound

Titanium isopropoxide, also commonly referred to as titanium tetraisopropoxide or TTIP, is a chemical compound with the formula Ti{OCH(CH3)2}4. This alkoxide of titanium(IV) is used in organic synthesis and materials science. It is a diamagnetic tetrahedral molecule. Titanium isopropoxide is a component of the Sharpless epoxidation, a method for the synthesis of chiral epoxides.

Metal acetylacetonates are coordination complexes derived from the acetylacetonate anion (CH
3
COCHCOCH
3
) and metal ions, usually transition metals. The bidentate ligand acetylacetonate is often abbreviated acac. Typically both oxygen atoms bind to the metal to form a six-membered chelate ring. The simplest complexes have the formula M(acac)3 and M(acac)2. Mixed-ligand complexes, e.g. VO(acac)2, are also numerous. Variations of acetylacetonate have also been developed with myriad substituents in place of methyl (RCOCHCOR). Many such complexes are soluble in organic solvents, in contrast to the related metal halides. Because of these properties, acac complexes are sometimes used as catalyst precursors and reagents. Applications include their use as NMR "shift reagents" and as catalysts for organic synthesis, and precursors to industrial hydroformylation catalysts. C
5
H
7
O
2
in some cases also binds to metals through the central carbon atom; this bonding mode is more common for the third-row transition metals such as platinum(II) and iridium(III).

<span class="mw-page-title-main">Metal amides</span>

Metal amides (systematic name metal azanides) are a class of coordination compounds composed of a metal center with amide ligands of the form NR2. Amido complexes of the parent amido ligand NH2 are rare compared to complexes with diorganylamido ligand, such as dimethylamido. Amide ligands have two electron pairs available for bonding.

<span class="mw-page-title-main">Titanium disulfide</span> Inorganic chemical compound

Titanium disulfide is an inorganic compound with the formula TiS2. A golden yellow solid with high electrical conductivity, it belongs to a group of compounds called transition metal dichalcogenides, which consist of the stoichiometry ME2. TiS2 has been employed as a cathode material in rechargeable batteries.

<span class="mw-page-title-main">Titanium(IV) nitrate</span> Chemical compound

Titanium nitrate is the inorganic compound with formula Ti(NO3)4. It is a colorless, diamagnetic solid that sublimes readily. It is an unusual example of a volatile binary transition metal nitrate. Ill defined species called titanium nitrate are produced upon dissolution of titanium or its oxides in nitric acid.

<span class="mw-page-title-main">Tris(dimethylamino)methane</span> Chemical compound

Tris(dimethylamino)methane (TDAM) is the simplest representative of the tris(dialkylamino)methanes of the general formula (R2N)3CH in which three of the four of methane's hydrogen atoms are replaced by dimethylamino groups (−N(CH3)2). Tris(dimethylamino)methane can be regarded as both an amine and an orthoamide.

<span class="mw-page-title-main">Pentakis(dimethylamido)tantalum</span> Chemical compound

Pentakis(dimethylamido)tantalum is an organometallic compound of tantalum. It is a colorless solid that is soluble in organic solvents. It hydrolyzes readily to release dimethylamine.

<span class="mw-page-title-main">Transition metal dithiocarbamate complexes</span>

Transition metal dithiocarbamate complexes are coordination complexes containing one or more dithiocarbamate ligand, which are typically abbreviated R2dtc. Many complexes are known. Several homoleptic derivatives have the formula M(R2dtc)n where n = 2 and 3.

The +4 oxidation state dominates titanium chemistry, but compounds in the +3 oxidation state are also numerous. Commonly, titanium adopts an octahedral coordination geometry in its complexes, but tetrahedral TiCl4 is a notable exception. Because of its high oxidation state, titanium(IV) compounds exhibit a high degree of covalent bonding.

Hafnium compounds are compounds containing the element hafnium (Hf). Due to the lanthanide contraction, the ionic radius of hafnium(IV) (0.78 ångström) is almost the same as that of zirconium(IV) (0.79 angstroms). Consequently, compounds of hafnium(IV) and zirconium(IV) have very similar chemical and physical properties. Hafnium and zirconium tend to occur together in nature and the similarity of their ionic radii makes their chemical separation rather difficult. Hafnium tends to form inorganic compounds in the oxidation state of +4. Halogens react with it to form hafnium tetrahalides. At higher temperatures, hafnium reacts with oxygen, nitrogen, carbon, boron, sulfur, and silicon. Some compounds of hafnium in lower oxidation states are known.

References

  1. GHS: Sigma Aldrich 469858
  2. D. C. Bradley and I. M. Thomas, "Part I. Metallo-organic Compounds containing Metal-Nitrogen bonds. Some Dialkylamino-derivatives of Titanium and Zirconium" J. Chem. Soc. 1960, 3857-3861. doi : 10.1039/JR9600003857.