Tube tester

Last updated
A "Sylvania Electric" multimeter tester for vacuum tubes Vacuum tube multimeter.jpg
A "Sylvania Electric" multimeter tester for vacuum tubes

A tube tester is an electronic instrument designed to test certain characteristics of vacuum tubes (thermionic valves). Tube testers evolved along with the vacuum tube to satisfy the demands of the time, and their evolution ended with the tube era. The first tube testers were simple units designed for specific tubes to be used in the battlefields of World War I by radio operators, so they could easily test the tubes of their communication equipment.

Contents

Types of tube testers

Modern testers

The most modern testers perform a multitude of the below tests and are fully automated. Examples of modern testers include the Amplitrex AT1000, the Space-Tech Lab AudioTubeTester, the Maxi pre-amp tester and the maxi-matcher (power tubes only) by maxi test and the new, and somewhat more primitive, DIVO VT1000 by Orange Amplification. While the AT1000, AudioTubeTester and the Maxi-test brand testers offer precise measurements of transconductance/Gm and emissions/iP at full or near full voltages, the Orange tester offers a very simple numerical quality scale. The AudioTubeTester has a unique feature of quick tube matching +/-percentage display.

Filament continuity tester

The simplest tester is the filament continuity tester, usually with a neon lamp connected in series with the filament/heater and a current limiting resistance fed directly by the mains. There is therefore no need to select the appropriate filament voltage for the particular tube under test, but this equipment will not identify tubes that may be faulty in other (more likely) ways, nor indicate any degree of wear. The same checks can be made with a cheap multimeter's resistance test.

Tube checker

The tube checker is the second-simplest of all tube testers after filament continuity testing. Tubes are used as a low power rectifier, with all elements other than filament connections connected together as the anode, at a fraction of its normal emission. By mistake referred to sometimes as Emission Tester because they are a crude measure of emission in directly heated types (but a measure of unwanted heater-cathode leakage in indirectly heated types). Switches will need to select the correct filament voltage and pins.

Emission tester

Next in complexity is the emission tester, which basically treats any tube as a diode by carefully connecting the cathode to ground, all the grids and plate to B+ voltage, feeding the filament with the correct voltage, and an ammeter in series with either the plate or the cathode. This effectively measures emission, the current which the cathode is capable of emitting, for the given plate voltage, which can usually be controlled by a variable load resistor. Switches will need to select the correct filament voltage plus which pins belong to the filament and cathode(s).

Older testers may call themselves Plate Conductance if the ammeter is in series with the plate, or Cathode Conductance if the meter is in series with the cathode. [1]

The problems of emission testers are:

The advantage of an emission tester is that from all types of tube testers, it provides the most reliable warning of tube wear-out. If emission is at 70%, transconductance can be at 90% still, and gain at 100%. The best and most popular version used by the German army was the Funke W19[ citation needed ] .

The disadvantage of an emission tester is that it can test a good tube as bad, and a bad tube as good, because it ignores other properties of the tube. A tube with low emission will work perfectly fine in most circuits, and need not be replaced on that indication alone, unless it measures much lower than specified or if it indicates a short.

A variation on the emission tester is the dynamic conductance tester, a type of tester developed by the Jackson Electrical Company of Dayton, Ohio. The main difference is the use of ‘proportional AC voltages’ in place of applying the current directly to the grids and plate. [2]

Short circuit test

Usually, emission testers also have a short circuit test which is just a variation of the continuity tester with a neon lamp, and which allows to identify if there is any shortcut between the different pairs of electrodes.

Parametric tester

A tester of this type applies DC voltage to the tube being tested, and datasheet values are verified under real conditions. Some parametric testers apply AC voltage to the tube being tested, with verification under conditions which simulate DC operation. Examples include the AVO line of tube testers, along with the Funke W20 and the Neuberger RPG375.

Mutual conductance tester

The mutual conductance tester tests the tube dynamically by applying bias and an AC voltage to the control grid, and measuring the current obtained on the plate, while maintaining the correct DC voltages on the plate and screen grid. This setup measures the transconductance of the tube, indicated in micromhos. [3]

Oscilloscope tube curve tracer plug-in

A full set of characteristic curves for vacuum tubes, and later for semiconductor devices, could be displayed on an oscilloscope screen by use of a plug-in adapter, or on a dedicated curve tracer. An example is the Tektronix 570. [4]

Self-service tube testers

An RCA self-service tube tester on display at the Oklahoma History Center. RCA-tube-tester-at-Oklahoma-History-Center.jpg
An RCA self-service tube tester on display at the Oklahoma History Center.

From the late 1920s until the early 1970s, many department stores, drug stores and grocery stores in the U.S. had a self-service tube-vending display. It typically consisted of a tube-tester atop a locked cabinet of tubes, with a flip chart of instructions. One would remove the tubes from a malfunctioning device, such as a radio or television, bring them to the store, and test them all, looking up the instructions from the model number on the tube and the flip chart. If a tube was defective, store personnel would sell a replacement from the cabinet.

At that time, tubes in consumer devices were installed in sockets and were easily replaceable, except for the CRT in televisions. Devices typically had a removable back with a diagram showing where to replace each tube. There were only a few types of tube socket; a radio or television set would have multiple identical sockets, so it was easy to mistakenly exchange tubes with different functions, but similar bases, between two different sockets. If testing showed all tubes to be working, the next step was a repair shop. As transistorized devices took over the market, the grocery-store tube-tester vanished.

See also

Related Research Articles

<span class="mw-page-title-main">Cathode</span> An electrode where reduction take place

A cathode is the electrode from which a conventional current leaves a polarized electrical device. This definition can be recalled by using the mnemonic CCD for Cathode Current Departs. A conventional current describes the direction in which positive charges move. Electrons have a negative electrical charge, so the movement of electrons is opposite to that of the conventional current flow. Consequently, the mnemonic cathode current departs also means that electrons flow into the device's cathode from the external circuit. For example, the end of a household battery marked with a + (plus) is the cathode.

<span class="mw-page-title-main">Pressure measurement</span> Analysis of force applied by a fluid on a surface

Pressure measurement is the measurement of an applied force by a fluid on a surface. Pressure is typically measured in units of force per unit of surface area. Many techniques have been developed for the measurement of pressure and vacuum. Instruments used to measure and display pressure mechanically are called pressure gauges,vacuum gauges or compound gauges. The widely used Bourdon gauge is a mechanical device, which both measures and indicates and is probably the best known type of gauge.

<span class="mw-page-title-main">Triode</span> Single-grid amplifying vacuum tube having three active electrodes

A triode is an electronic amplifying vacuum tube consisting of three electrodes inside an evacuated glass envelope: a heated filament or cathode, a grid, and a plate (anode). Developed from Lee De Forest's 1906 Audion, a partial vacuum tube that added a grid electrode to the thermionic diode, the triode was the first practical electronic amplifier and the ancestor of other types of vacuum tubes such as the tetrode and pentode. Its invention founded the electronics age, making possible amplified radio technology and long-distance telephony. Triodes were widely used in consumer electronics devices such as radios and televisions until the 1970s, when transistors replaced them. Today, their main remaining use is in high-power RF amplifiers in radio transmitters and industrial RF heating devices. In recent years there has been a resurgence in demand for low power triodes due to renewed interest in tube-type audio systems by audiophiles who prefer the pleasantly (warm) distorted sound of tube-based electronics.

<span class="mw-page-title-main">Vacuum tube</span> Device that controls electric current between electrodes in an evacuated container

A vacuum tube, electron tube, valve, or tube, is a device that controls electric current flow in a high vacuum between electrodes to which an electric potential difference has been applied.

A tetrode is a vacuum tube having four active electrodes. The four electrodes in order from the centre are: a thermionic cathode, first and second grids and a plate. There are several varieties of tetrodes, the most common being the screen-grid tube and the beam tetrode. In screen-grid tubes and beam tetrodes, the first grid is the control grid and the second grid is the screen grid. In other tetrodes one of the grids is a control grid, while the other may have a variety of functions.

<span class="mw-page-title-main">Selectron tube</span> Early and obsolete type of computer memory

The Selectron was an early form of digital computer memory developed by Jan A. Rajchman and his group at the Radio Corporation of America (RCA) under the direction of Vladimir K. Zworykin. It was a vacuum tube that stored digital data as electrostatic charges using technology similar to the Williams tube storage device. The team was never able to produce a commercially viable form of Selectron before magnetic-core memory became almost universal.

<span class="mw-page-title-main">Valve amplifier</span> Type of electronic amplifier

A valve amplifier or tube amplifier is a type of electronic amplifier that uses vacuum tubes to increase the amplitude or power of a signal. Low to medium power valve amplifiers for frequencies below the microwaves were largely replaced by solid state amplifiers in the 1960s and 1970s. Valve amplifiers can be used for applications such as guitar amplifiers, satellite transponders such as DirecTV and GPS, high quality stereo amplifiers, military applications and very high power radio and UHF television transmitters.

<span class="mw-page-title-main">Vacuum fluorescent display</span> Display used in consumer electronics

A vacuum fluorescent display (VFD) is a display device once commonly used on consumer electronics equipment such as video cassette recorders, car radios, and microwave ovens.

<span class="mw-page-title-main">Control grid</span> Electrode used to control electron flow within a vacuum tube

The control grid is an electrode used in amplifying thermionic valves such as the triode, tetrode and pentode, used to control the flow of electrons from the cathode to the anode (plate) electrode. The control grid usually consists of a cylindrical screen or helix of fine wire surrounding the cathode, and is surrounded in turn by the anode. The control grid was invented by Lee De Forest, who in 1906 added a grid to the Fleming valve to create the first amplifying vacuum tube, the Audion (triode).

<span class="mw-page-title-main">Dynatron oscillator</span> Vacuum tube electronic oscillator circuit

In electronics, the dynatron oscillator, invented in 1918 by Albert Hull at General Electric, is an obsolete vacuum tube electronic oscillator circuit which uses a negative resistance characteristic in early tetrode vacuum tubes, caused by a process called secondary emission. It was the first negative resistance vacuum tube oscillator. The dynatron oscillator circuit was used to a limited extent as beat frequency oscillators (BFOs), and local oscillators in vacuum tube radio receivers as well as in scientific and test equipment from the 1920s to the 1940s but became obsolete around World War 2 due to the variability of secondary emission in tubes.

Transconductance, also infrequently called mutual conductance, is the electrical characteristic relating the current through the output of a device to the voltage across the input of a device. Conductance is the reciprocal of resistance.

<span class="mw-page-title-main">Pentode</span> Vacuum tube with five electrodes

A pentode is an electronic device having five electrodes. The term most commonly applies to a three-grid amplifying vacuum tube or thermionic valve that was invented by Gilles Holst and Bernhard D.H. Tellegen in 1926. The pentode was developed from the screen-grid tube or shield-grid tube by the addition of a grid between the screen grid and the plate. The screen-grid tube was limited in performance as an amplifier due to secondary emission of electrons from the plate. The additional grid is called the suppressor grid. The suppressor grid is usually operated at or near the potential of the cathode and prevents secondary emission electrons from the plate from reaching the screen grid. The addition of the suppressor grid permits much greater output signal amplitude to be obtained from the plate of the pentode in amplifier operation than from the plate of the screen-grid tube at the same plate supply voltage. Pentodes were widely manufactured and used in electronic equipment until the 1960s to 1970s, during which time transistors replaced tubes in new designs. During the first quarter of the 21st century, a few pentode tubes have been in production for high power radio frequency applications, musical instrument amplifiers, home audio and niche markets.

<span class="mw-page-title-main">Hot-filament ionization gauge</span>

The hot-filament ionization gauge, sometimes called a hot-filament gauge or hot-cathode gauge, is the most widely used low-pressure (vacuum) measuring device for the region from 10−3 to 10−10 Torr. It is a triode, with the filament being the cathode.

<span class="mw-page-title-main">Hot cathode</span> Type of electrode

In vacuum tubes and gas-filled tubes, a hot cathode or thermionic cathode is a cathode electrode which is heated to make it emit electrons due to thermionic emission. This is in contrast to a cold cathode, which does not have a heating element. The heating element is usually an electrical filament heated by a separate electric current passing through it. Hot cathodes typically achieve much higher power density than cold cathodes, emitting significantly more electrons from the same surface area. Cold cathodes rely on field electron emission or secondary electron emission from positive ion bombardment, and do not require heating. There are two types of hot cathode. In a directly heated cathode, the filament is the cathode and emits the electrons. In an indirectly heated cathode, the filament or heater heats a separate metal cathode electrode which emits the electrons.

<span class="mw-page-title-main">Biasing</span> Predetermined voltages or currents establishing proper operating conditions in electronic components

In electronics, biasing is the setting of DC operating conditions of an active device in an amplifier. Many electronic devices, such as diodes, transistors and vacuum tubes, whose function is processing time-varying (AC) signals, also require a steady (DC) current or voltage at their terminals to operate correctly. This current or voltage is called bias. The AC signal applied to them is superposed on this DC bias current or voltage.

In electronics, cathode bias is a technique used with vacuum tubes to make the direct current (dc) cathode voltage positive in relation to the negative side of the plate voltage supply by an amount equal to the magnitude of the desired grid bias voltage.

In electronics, cut-off is a state of negligible conduction that is a property of several types of electronic components when a control parameter, is lowered or increased past a value. The transition from normal conduction to cut-off can be more or less sharp, depending on the type of device considered, and also the speed of this transition varies considerably.

<span class="mw-page-title-main">Fleming valve</span> Type of vacuum tube; early radio detector

The Fleming valve, also called the Fleming oscillation valve, was a thermionic valve or vacuum tube invented in 1904 by English physicist John Ambrose Fleming as a detector for early radio receivers used in electromagnetic wireless telegraphy. It was the first practical vacuum tube and the first thermionic diode, a vacuum tube whose purpose is to conduct current in one direction and block current flowing in the opposite direction. The thermionic diode was later widely used as a rectifier — a device which converts alternating current (AC) into direct current (DC) — in the power supplies of a wide range of electronic devices, until beginning to be replaced by the selenium rectifier in the early 1930s and almost completely replaced by the semiconductor diode in the 1960s. The Fleming valve was the forerunner of all vacuum tubes, which dominated electronics for 50 years. The IEEE has described it as "one of the most important developments in the history of electronics", and it is on the List of IEEE Milestones for electrical engineering.

<span class="mw-page-title-main">Magic eye tube</span> Visual indicator of the amplitude of an electronic signal

A magic eye tube or tuning indicator, in technical literature called an electron-ray indicator tube, is a vacuum tube which gives a visual indication of the amplitude of an electronic signal, such as an audio output, radio-frequency signal strength, or other functions. The magic eye is a specific type of such a tube with a circular display similar to the EM34 illustrated. Its first broad application was as a tuning indicator in radio receivers, to give an indication of the relative strength of the received radio signal, to show when a radio station was properly tuned in.

<span class="mw-page-title-main">955 acorn triode</span> Thermionic valve for VHF operation

The type 955 triode "acorn tube" is a small triode thermionic valve designed primarily to operate at high frequency. Although data books specify an upper limit of 400–600 MHz, some circuits may obtain gain up to about 900 MHz. Interelectrode capacitances and Miller capacitances are minimized by the small dimensions of the device and the widely separated pins. The connecting pins are placed around the periphery of the bulb and project radially outward: this maintains short internal leads with low inductance, an important property allowing operation at high frequency. The pins fit a special socket fabricated as a ceramic ring in which the valve itself occupies the central space. The 955 was developed by RCA and was commercially available in 1935.

References

  1. Know your Tube and Transistor Testers, Robert G. Middleton
  2. "Jackson Tube Testers | | Tales from the Tone Lounge". Tone Lizard. http://tone-lizard.com . Retrieved 2015-12-22.{{cite web}}: External link in |publisher= (help)
  3. "Mutual Conductance vs. Emission Test". RadiolaGuy.com. Retrieved 2010-12-08.
  4. Radiomuseum: Electron Tube Curve Tracer 570