Tychonoff space

Last updated
Separation axioms
in topological spaces
Kolmogorov classification
T0  (Kolmogorov)
T1  (Fréchet)
T2  (Hausdorff)
T2½ (Urysohn)
completely T2  (completely Hausdorff)
T3  (regular Hausdorff)
T3½ (Tychonoff)
T4  (normal Hausdorff)
T5  (completely normal
 Hausdorff)
T6  (perfectly normal
 Hausdorff)

In topology and related branches of mathematics, Tychonoff spaces and completely regular spaces are kinds of topological spaces. These conditions are examples of separation axioms. A Tychonoff space is any completely regular space that is also a Hausdorff space; there exist completely regular spaces that are not Tychonoff (i.e. not Hausdorff).

Contents

Paul Urysohn had used the notion of completely regular space in a 1925 paper [1] without giving it a name. But it was Andrey Tychonoff who introduced the terminology completely regular in 1930. [2]

Definitions

Separation of a point from a closed set via a continuous function. Separation of a point from a closed set via a continuous function.svg
Separation of a point from a closed set via a continuous function.

A topological space is called completely regular if points can be separated from closed sets via (bounded) continuous real-valued functions. In technical terms this means: for any closed set and any point there exists a real-valued continuous function such that and (Equivalently one can choose any two values instead of and and even require that be a bounded function.)

A topological space is called a Tychonoff space (alternatively: T space, or Tπ space, or completely T3 space) if it is a completely regular Hausdorff space.

Remark. Completely regular spaces and Tychonoff spaces are related through the notion of Kolmogorov equivalence. A topological space is Tychonoff if and only if it's both completely regular and T0. On the other hand, a space is completely regular if and only if its Kolmogorov quotient is Tychonoff.

Naming conventions

Across mathematical literature different conventions are applied when it comes to the term "completely regular" and the "T"-Axioms. The definitions in this section are in typical modern usage. Some authors, however, switch the meanings of the two kinds of terms, or use all terms interchangeably. In Wikipedia, the terms "completely regular" and "Tychonoff" are used freely and the "T"-notation is generally avoided. In standard literature, caution is thus advised, to find out which definitions the author is using. For more on this issue, see History of the separation axioms.

Examples

Almost every topological space studied in mathematical analysis is Tychonoff, or at least completely regular. For example, the real line is Tychonoff under the standard Euclidean topology. Other examples include:

There are regular Hausdorff spaces that are not completely regular, but such examples are complicated to construct. One of them is the so-called Tychonoff corkscrew, [3] [4] which contains two points such that any continuous real-valued function on the space has the same value at these two points. An even more complicated construction starts with the Tychonoff corkscrew and builds a regular Hausdorff space called Hewitt's condensed corkscrew, [5] [6] which is not completely regular in a stronger way, namely, every continuous real-valued function on the space is constant.

Properties

Preservation

Complete regularity and the Tychonoff property are well-behaved with respect to initial topologies. Specifically, complete regularity is preserved by taking arbitrary initial topologies and the Tychonoff property is preserved by taking point-separating initial topologies. It follows that:

Like all separation axioms, complete regularity is not preserved by taking final topologies. In particular, quotients of completely regular spaces need not be regular. Quotients of Tychonoff spaces need not even be Hausdorff, with one elementary counterexample being the line with two origins. There are closed quotients of the Moore plane that provide counterexamples.

Real-valued continuous functions

For any topological space let denote the family of real-valued continuous functions on and let be the subset of bounded real-valued continuous functions.

Completely regular spaces can be characterized by the fact that their topology is completely determined by or In particular:

Given an arbitrary topological space there is a universal way of associating a completely regular space with Let ρ be the initial topology on induced by or, equivalently, the topology generated by the basis of cozero sets in Then ρ will be the finest completely regular topology on that is coarser than This construction is universal in the sense that any continuous function

to a completely regular space will be continuous on In the language of category theory, the functor that sends to is left adjoint to the inclusion functor CRegTop. Thus the category of completely regular spaces CReg is a reflective subcategory of Top, the category of topological spaces. By taking Kolmogorov quotients, one sees that the subcategory of Tychonoff spaces is also reflective.

One can show that in the above construction so that the rings and are typically only studied for completely regular spaces

The category of realcompact Tychonoff spaces is anti-equivalent to the category of the rings (where is realcompact) together with ring homomorphisms as maps. For example one can reconstruct from when is (real) compact. The algebraic theory of these rings is therefore subject of intensive studies. A vast generalization of this class of rings that still resembles many properties of Tychonoff spaces, but is also applicable in real algebraic geometry, is the class of real closed rings.

Embeddings

Tychonoff spaces are precisely those spaces that can be embedded in compact Hausdorff spaces. More precisely, for every Tychonoff space there exists a compact Hausdorff space such that is homeomorphic to a subspace of

In fact, one can always choose to be a Tychonoff cube (i.e. a possibly infinite product of unit intervals). Every Tychonoff cube is compact Hausdorff as a consequence of Tychonoff's theorem. Since every subspace of a compact Hausdorff space is Tychonoff one has:

A topological space is Tychonoff if and only if it can be embedded in a Tychonoff cube.

Compactifications

Of particular interest are those embeddings where the image of is dense in these are called Hausdorff compactifications of Given any embedding of a Tychonoff space in a compact Hausdorff space the closure of the image of in is a compactification of In the same 1930 article [2] where Tychonoff defined completely regular spaces, he also proved that every Tychonoff space has a Hausdorff compactification.

Among those Hausdorff compactifications, there is a unique "most general" one, the Stone–Čech compactification It is characterized by the universal property that, given a continuous map from to any other compact Hausdorff space there is a unique continuous map that extends in the sense that is the composition of and

Uniform structures

Complete regularity is exactly the condition necessary for the existence of uniform structures on a topological space. In other words, every uniform space has a completely regular topology and every completely regular space is uniformizable. A topological space admits a separated uniform structure if and only if it is Tychonoff.

Given a completely regular space there is usually more than one uniformity on that is compatible with the topology of However, there will always be a finest compatible uniformity, called the fine uniformity on If is Tychonoff, then the uniform structure can be chosen so that becomes the completion of the uniform space

See also

Citations

  1. Urysohn, Paul (1925). "Über die Mächtigkeit der zusammenhängenden Mengen". Mathematische Annalen. 94 (1): 262–295. doi:10.1007/BF01208659. See pages 291 and 292.
  2. 1 2 Tychonoff, A. (1930). "Über die topologische Erweiterung von Räumen". Mathematische Annalen. 102 (1): 544–561. doi:10.1007/BF01782364.
  3. Willard 1970, Problem 18G.
  4. Steen & Seebach 1995, Example 90.
  5. Steen & Seebach 1995, Example 92.
  6. Hewitt, Edwin (1946). "On Two Problems of Urysohn". Annals of Mathematics. 47 (3): 503–509. doi:10.2307/1969089.

Bibliography

Related Research Articles

In mathematics, more specifically in functional analysis, a Banach space is a complete normed vector space. Thus, a Banach space is a vector space with a metric that allows the computation of vector length and distance between vectors and is complete in the sense that a Cauchy sequence of vectors always converges to a well-defined limit that is within the space.

<span class="mw-page-title-main">Compact space</span> Type of mathematical space

In mathematics, specifically general topology, compactness is a property that seeks to generalize the notion of a closed and bounded subset of Euclidean space. The idea is that a compact space has no "punctures" or "missing endpoints", i.e., it includes all limiting values of points. For example, the open interval (0,1) would not be compact because it excludes the limiting values of 0 and 1, whereas the closed interval [0,1] would be compact. Similarly, the space of rational numbers is not compact, because it has infinitely many "punctures" corresponding to the irrational numbers, and the space of real numbers is not compact either, because it excludes the two limiting values and . However, the extended real number linewould be compact, since it contains both infinities. There are many ways to make this heuristic notion precise. These ways usually agree in a metric space, but may not be equivalent in other topological spaces.

In mathematics, in general topology, compactification is the process or result of making a topological space into a compact space. A compact space is a space in which every open cover of the space contains a finite subcover. The methods of compactification are various, but each is a way of controlling points from "going off to infinity" by in some way adding "points at infinity" or preventing such an "escape".

In topology and related branches of mathematics, a Hausdorff space ( HOWSS-dorf, HOWZ-dorf), separated space or T2 space is a topological space where, for any two distinct points, there exist neighbourhoods of each that are disjoint from each other. Of the many separation axioms that can be imposed on a topological space, the "Hausdorff condition" (T2) is the most frequently used and discussed. It implies the uniqueness of limits of sequences, nets, and filters.

In topology and related areas of mathematics, a metrizable space is a topological space that is homeomorphic to a metric space. That is, a topological space is said to be metrizable if there is a metric such that the topology induced by is Metrization theorems are theorems that give sufficient conditions for a topological space to be metrizable.

In mathematics, a topological space is, roughly speaking, a geometrical space in which closeness is defined but cannot necessarily be measured by a numeric distance. More specifically, a topological space is a set whose elements are called points, along with an additional structure called a topology, which can be defined as a set of neighbourhoods for each point that satisfy some axioms formalizing the concept of closeness. There are several equivalent definitions of a topology, the most commonly used of which is the definition through open sets, which is easier than the others to manipulate.

This is a glossary of some terms used in the branch of mathematics known as topology. Although there is no absolute distinction between different areas of topology, the focus here is on general topology. The following definitions are also fundamental to algebraic topology, differential topology and geometric topology.

In mathematics, a topological vector space is one of the basic structures investigated in functional analysis. A topological vector space is a vector space that is also a topological space with the property that the vector space operations are also continuous functions. Such a topology is called a vector topology and every topological vector space has a uniform topological structure, allowing a notion of uniform convergence and completeness. Some authors also require that the space is a Hausdorff space. One of the most widely studied categories of TVSs are locally convex topological vector spaces. This article focuses on TVSs that are not necessarily locally convex. Banach spaces, Hilbert spaces and Sobolev spaces are other well-known examples of TVSs.

In geometry, topology, and related branches of mathematics, a closed set is a set whose complement is an open set. In a topological space, a closed set can be defined as a set which contains all its limit points. In a complete metric space, a closed set is a set which is closed under the limit operation. This should not be confused with a closed manifold.

In topology and related branches of mathematics, a normal space is a topological space X that satisfies Axiom T4: every two disjoint closed sets of X have disjoint open neighborhoods. A normal Hausdorff space is also called a T4 space. These conditions are examples of separation axioms and their further strengthenings define completely normal Hausdorff spaces, or T5 spaces, and perfectly normal Hausdorff spaces, or T6 spaces.

In topology and related branches of mathematics, a topological space is called locally compact if, roughly speaking, each small portion of the space looks like a small portion of a compact space. More precisely, it is a topological space in which every point has a compact neighborhood.

In the mathematical discipline of general topology, Stone–Čech compactification is a technique for constructing a universal map from a topological space X to a compact Hausdorff space βX. The Stone–Čech compactification βX of a topological space X is the largest, most general compact Hausdorff space "generated" by X, in the sense that any continuous map from X to a compact Hausdorff space factors through βX. If X is a Tychonoff space then the map from X to its image in βX is a homeomorphism, so X can be thought of as a (dense) subspace of βX; every other compact Hausdorff space that densely contains X is a quotient of βX. For general topological spaces X, the map from X to βX need not be injective.

In the mathematical field of topology, the Alexandroff extension is a way to extend a noncompact topological space by adjoining a single point in such a way that the resulting space is compact. It is named after the Russian mathematician Pavel Alexandroff. More precisely, let X be a topological space. Then the Alexandroff extension of X is a certain compact space X* together with an open embedding c : X → X* such that the complement of X in X* consists of a single point, typically denoted ∞. The map c is a Hausdorff compactification if and only if X is a locally compact, noncompact Hausdorff space. For such spaces the Alexandroff extension is called the one-point compactification or Alexandroff compactification. The advantages of the Alexandroff compactification lie in its simple, often geometrically meaningful structure and the fact that it is in a precise sense minimal among all compactifications; the disadvantage lies in the fact that it only gives a Hausdorff compactification on the class of locally compact, noncompact Hausdorff spaces, unlike the Stone–Čech compactification which exists for any topological space.

<span class="mw-page-title-main">General topology</span> Branch of topology

In mathematics, general topology is the branch of topology that deals with the basic set-theoretic definitions and constructions used in topology. It is the foundation of most other branches of topology, including differential topology, geometric topology, and algebraic topology.

In mathematics, the Bohr compactification of a topological group G is a compact Hausdorff topological group H that may be canonically associated to G. Its importance lies in the reduction of the theory of uniformly almost periodic functions on G to the theory of continuous functions on H. The concept is named after Harald Bohr who pioneered the study of almost periodic functions, on the real line.

In topology, a topological space is called a compactly generated space or k-space if its topology is determined by compact spaces in a manner made precise below. There is in fact no commonly agreed upon definition for such spaces, as different authors use variations of the definition that are not exactly equivalent to each other. Also some authors include some separation axiom in the definition of one or both terms, and others don't.

In topology and related areas of mathematics, a topological property or topological invariant is a property of a topological space that is invariant under homeomorphisms. Alternatively, a topological property is a proper class of topological spaces which is closed under homeomorphisms. That is, a property of spaces is a topological property if whenever a space X possesses that property every space homeomorphic to X possesses that property. Informally, a topological property is a property of the space that can be expressed using open sets.

In mathematics, in the field of topology, a topological space is said to be realcompact if it is completely regular Hausdorff and it contains every point of its Stone–Čech compactification which is real. Realcompact spaces have also been called Q-spaces, saturated spaces, functionally complete spaces, real-complete spaces, replete spaces and Hewitt–Nachbin spaces. Realcompact spaces were introduced by Hewitt (1948).

In topology, a coherent topology is a topology that is uniquely determined by a family of subspaces. Loosely speaking, a topological space is coherent with a family of subspaces if it is a topological union of those subspaces. It is also sometimes called the weak topology generated by the family of subspaces, a notion that is quite different from the notion of a weak topology generated by a set of maps.

In functional analysis and related areas of mathematics, a complete topological vector space is a topological vector space (TVS) with the property that whenever points get progressively closer to each other, then there exists some point towards which they all get closer. The notion of "points that get progressively closer" is made rigorous by Cauchy nets or Cauchy filters, which are generalizations of Cauchy sequences, while "point towards which they all get closer" means that this Cauchy net or filter converges to The notion of completeness for TVSs uses the theory of uniform spaces as a framework to generalize the notion of completeness for metric spaces. But unlike metric-completeness, TVS-completeness does not depend on any metric and is defined for all TVSs, including those that are not metrizable or Hausdorff.