UltraRAM

Last updated
Schematic cross-section of a device with corresponding material layers. (Image credit: Lancaster University) Schematic cross-section of a device with corresponding material layers..png
Schematic cross-section of a device with corresponding material layers. (Image credit: Lancaster University)

UltraRAM is a brand name and a storage device technology that is under development. The Physics and Engineering department of Lancaster University in collaboration with Department of Physics at Warwick published a paper [1] in the journal of advanced electronic materials suggesting an improvement in non volatile memory technology. It has been described as a memory storage technology that "combines the non-volatility of a data storage memory, like flash, with the speed, energy-efficiency, and endurance of a working memory, like DRAM" which means it could retain data like a hard drive. [2] While the Lancaster team performed some basic experiments to demonstrate the principles in action, UltraRAM remains mostly theoretical at the moment. [3] The Lancaster University researchers say that further work is ongoing to improve quality, fine-tune the fabrication process, and implement and scale UltraRAM devices. [4]

Contents

History

In 2023 Quinas company formed to further develop Ultraram. [5]

Memory Concept

ULTRARAM is a charge-based memory where the logic state is determined by the presence or absence of electrons in an FG (Front Gate). The FG is electrically isolated from the control gate (CG) by Al2O3 dielectric, and from the underlying channel by the InAs/AlSb TBRT heterostructure. The presence of electrons in the FG (defining a logic 0 state) depletes carriers in the underlying n-type InAs channel, reducing its conductance. Thus, the charge state of the FG and, therefore, the logic state of the memory, is read nondestructively by measuring the current through the channel when a voltage is applied between the source (S) and drain (D) contacts. The final component of the memory is the InAs back-gate (BG), which allows voltages to be applied vertically across the gate stack for various operations.

The novelty underpinning the memory is the TBRT (Triple Barrier Resonant Tunneling) structure, which, unlike single layer barriers, can be switched from a highly electrically resistive state to a highly conductive state by the application of just ±2.5 V. This is achieved by careful design of the thicknesses of the AlSb barriers and InAs QW (Quantum Well) layers. When the memory is in the retention state, i.e., when no voltage is applied to the device, the electron ground states in the TBRT QWs are misaligned with each other and are energetically well above the 300 K electron populations of the InAs FG and channel layers. Indeed, nonvolatility is strengthened by the QW ground states residing at an unusually high energy for a resonant-tunneling structure. This is due to a combination of the ultrathin QWs and the extraordinarily low electron effective mass in InAs. In this state, the TBRT provides a large barrier that prevents electron transfer into or out of the FG. However, the application of a suitable bias across the device tilts the conduction band such that the TBRT QW ground states align with occupied electron states in the channel (during the program operation) or the FG (during the erase operation). This allows electrons to move rapidly across the TBRT region in the intended direction by the inherently fast quantum-mechanical process of resonant tunneling. Due to the low voltages required and the low capacitance per unit area of the device compared to DRAM, ultralow logic state switching energies of 10−17 J are predicted for 20 nm feature size ULTRARAM memories, which is two and three orders of magnitude lower than DRAM and flash respectively. However, before this ultralow switching energy can be realized by fabricating nm-scale devices, the fundamental properties of μm-scale devices must first be understood and optimized. ULTRARAM prototype devices grown on GaAs substrates have previously exhibited experiment-limited, not device-limited, nonvolatile retention of 105 s and an endurance of 106 program-erase cycles. [1]

Operations

Retention and endurance characteristics. a) Retention data for a 20 mm gate-length cell. b) S-D current difference ([?]IS-D) for the >24 h retention plotted on a log scale. c) Endurance data for continuous program-read-erase-read cycling (5 ms pulses) on a second 20 mm gate-length cell. d) Extended endurance to >10 cycles. e) Oscilloscope trace showing the applied gate bias for a section of the pulse train. Retention and endurance characteristics.png
Retention and endurance characteristics. a) Retention data for a 20 μm gate-length cell. b) S-D current difference (∆IS-D) for the >24 h retention plotted on a log scale. c) Endurance data for continuous program-read-erase-read cycling (5 ms pulses) on a second 20 μm gate-length cell. d) Extended endurance to >10 cycles. e) Oscilloscope trace showing the applied gate bias for a section of the pulse train.

A charged FG is defined as logic '0', and the absence of charge as logic '1'. Program and erase cycles, to charge and discharge the FG respectively, use voltage pulses of ≤±2.55 V on the CG.

InAs channel transistors with submicrometer feature sizes and a subthreshold swing of <100 mV/dec have previously been demonstrated. [6] Consequently, due to the threshold voltage window of 350 mV in the devices designed by the Lancaster team, one can expect the 0/1 current contrast of ULTRARAM to improve to three decades with the implementation of a normally-off channel. Such an improvement of the 0/1 contrast through careful modification of the channel will allow memory arrays to be built with a novel high-density RAM architecture. [1]

Significance

The ULTRARAM on silicon devices actually outperform previous incarnations of the technology on GaAs compound semiconductor wafers, demonstrating (extrapolated) data storage times of at least 1000 years, fast switching speed (for device size) and program-erase cycling endurance of at least 10 million, which is one hundred to one thousand times better than flash. Professor Manus Hayne of the Department of Physics at Lancaster, who leads the work said, "ULTRARAM on silicon is a huge advance for our research, overcoming very significant materials challenges of large crystalline lattice mismatch, the change from elemental to compound semiconductor and differences in thermal contraction." [2]

Accolades

On August 11, 2023, it won the "Most Innovative Flash Memory Startup" award at the 17th Flash Memory Summit (FMS 2023). [7]


See also

Related Research Articles

<span class="mw-page-title-main">Computer memory</span> Component of a computer storing information for immediate use.

Computer memory stores information, such as data and programs for immediate use in the computer. The term memory is often synonymous with the term primary storage or main memory. An archaic synonym for memory is store.

<span class="mw-page-title-main">Flash memory</span> Electronic non-volatile computer storage device

Flash memory is an electronic non-volatile computer memory storage medium that can be electrically erased and reprogrammed. The two main types of flash memory, NOR flash and NAND flash, are named for the NOR and NAND logic gates. Both use the same cell design, consisting of floating gate MOSFETs. They differ at the circuit level depending on whether the state of the bit line or word lines is pulled high or low: in NAND flash, the relationship between the bit line and the word lines resembles a NAND gate; in NOR flash, it resembles a NOR gate.

<span class="mw-page-title-main">EEPROM</span> Computer memory used for small quantities of data

EEPROM (also called E2PROM) stands for electrically erasable programmable read-only memory and is a type of non-volatile memory used in computers, usually integrated in microcontrollers such as smart cards and remote keyless systems, or as a separate chip device to store relatively small amounts of data by allowing individual bytes to be erased and reprogrammed.

Non-volatile memory (NVM) or non-volatile storage is a type of computer memory that can retain stored information even after power is removed. In contrast, volatile memory needs constant power in order to retain data.

Nano-RAM is a proprietary computer memory technology from the company Nantero. It is a type of nonvolatile random-access memory based on the position of carbon nanotubes deposited on a chip-like substrate. In theory, the small size of the nanotubes allows for very high density memories. Nantero also refers to it as NRAM.

Reading is an action performed by computers, to acquire data from a source and place it into their volatile memory for processing. Computers may read information from a variety of sources, such as magnetic storage, the Internet, or audio and video input ports. Reading is one of the core functions of a Turing machine.

Semiconductor memory is a digital electronic semiconductor device used for digital data storage, such as computer memory. It typically refers to devices in which data is stored within metal–oxide–semiconductor (MOS) memory cells on a silicon integrated circuit memory chip. There are numerous different types using different semiconductor technologies. The two main types of random-access memory (RAM) are static RAM (SRAM), which uses several transistors per memory cell, and dynamic RAM (DRAM), which uses a transistor and a MOS capacitor per cell. Non-volatile memory uses floating-gate memory cells, which consist of a single floating-gate transistor per cell.

<span class="mw-page-title-main">Ferroelectric RAM</span> Novel type of computer memory

Ferroelectric RAM is a random-access memory similar in construction to DRAM but using a ferroelectric layer instead of a dielectric layer to achieve non-volatility. FeRAM is one of a growing number of alternative non-volatile random-access memory technologies that offer the same functionality as flash memory. An FeRAM chip contains a thin film of ferroelectric material, often lead zirconate titanate, commonly referred to as PZT. The atoms in the PZT layer change polarity in an electric field, thereby producing a power-efficient binary switch. However, the most important aspect of the PZT is that it is not affected by power disruption or magnetic interference, making FeRAM a reliable nonvolatile memory.

<span class="mw-page-title-main">Depletion-load NMOS logic</span> Form of digital logic family in integrated circuits

In integrated circuits, depletion-load NMOS is a form of digital logic family that uses only a single power supply voltage, unlike earlier NMOS logic families that needed more than one different power supply voltage. Although manufacturing these integrated circuits required additional processing steps, improved switching speed and the elimination of the extra power supply made this logic family the preferred choice for many microprocessors and other logic elements.

Charge trap flash (CTF) is a semiconductor memory technology used in creating non-volatile NOR and NAND flash memory. It is a type of floating-gate MOSFET memory technology, but differs from the conventional floating-gate technology in that it uses a silicon nitride film to store electrons rather than the doped polycrystalline silicon typical of a floating-gate structure. This approach allows memory manufacturers to reduce manufacturing costs five ways:

  1. Fewer process steps are required to form a charge storage node
  2. Smaller process geometries can be used
  3. Multiple bits can be stored on a single flash memory cell
  4. Improved reliability
  5. Higher yield since the charge trap is less susceptible to point defects in the tunnel oxide layer

Hot carrier injection (HCI) is a phenomenon in solid-state electronic devices where an electron or a “hole” gains sufficient kinetic energy to overcome a potential barrier necessary to break an interface state. The term "hot" refers to the effective temperature used to model carrier density, not to the overall temperature of the device. Since the charge carriers can become trapped in the gate dielectric of a MOS transistor, the switching characteristics of the transistor can be permanently changed. Hot-carrier injection is one of the mechanisms that adversely affects the reliability of semiconductors of solid-state devices.

SONOS, short for "silicon–oxide–nitride–oxide–silicon", more precisely, "polycrystalline silicon"—"silicon dioxide"—"silicon nitride"—"silicon dioxide"—"silicon", is a cross sectional structure of MOSFET (metal–oxide–semiconductor field-effect transistor), realized by P.C.Y. Chen of Fairchild Camera and Instrument in 1977. This structure is often used for non-volatile memories, such as EEPROM and flash memories. It is sometimes used for TFT LCD displays. It is one of CTF (charge trap flash) variants. It is distinguished from traditional non-volatile memory structures by the use of silicon nitride (Si3N4 or Si9N10) instead of "polysilicon-based FG (floating-gate)" for the charge storage material. A further variant is "SHINOS" ("silicon"—"hi-k"—"nitride"—"oxide"—"silicon"), which is substituted top oxide layer with high-κ material. Another advanced variant is "MONOS" ("metal–oxide–nitride–oxide–silicon"). Companies offering SONOS-based products include Cypress Semiconductor, Macronix, Toshiba, United Microelectronics Corporation and Floadia.

Resistive random-access memory is a type of non-volatile (NV) random-access (RAM) computer memory that works by changing the resistance across a dielectric solid-state material, often referred to as a memristor. One major advantage of ReRAM over other NVRAM technologies is the ability to scale below 10nm.

<span class="mw-page-title-main">Read-only memory</span> Electronic memory that cannot be changed

Read-only memory (ROM) is a type of non-volatile memory used in computers and other electronic devices. Data stored in ROM cannot be electronically modified after the manufacture of the memory device. Read-only memory is useful for storing software that is rarely changed during the life of the system, also known as firmware. Software applications for programmable devices can be distributed as plug-in cartridges containing ROM.

<span class="mw-page-title-main">Random-access memory</span> Form of computer data storage

Random-access memory is a form of electronic computer memory that can be read and changed in any order, typically used to store working data and machine code. A random-access memory device allows data items to be read or written in almost the same amount of time irrespective of the physical location of data inside the memory, in contrast with other direct-access data storage media, where the time required to read and write data items varies significantly depending on their physical locations on the recording medium, due to mechanical limitations such as media rotation speeds and arm movement.

The following outline is provided as an overview of and topical guide to electronics:

<span class="mw-page-title-main">Field-effect transistor</span> Type of transistor

The field-effect transistor (FET) is a type of transistor that uses an electric field to control the flow of current in a semiconductor. It comes in two types: junction-gate FET (JFET) and metal-oxide-semiconductor FET (MOSFET). FETs have three terminals: source, gate, and drain. FETs control the flow of current by the application of a voltage to the gate, which in turn alters the conductivity between the drain and source.

<span class="mw-page-title-main">Memory cell (computing)</span> Part of computer memory

The memory cell is the fundamental building block of computer memory. The memory cell is an electronic circuit that stores one bit of binary information and it must be set to store a logic 1 and reset to store a logic 0. Its value is maintained/stored until it is changed by the set/reset process. The value in the memory cell can be accessed by reading it.

The metal–nitride–oxide–semiconductor or metal–nitride–oxide–silicon (MNOS) transistor is a type of MOSFET in which the oxide layer is replaced by a double layer of nitride and oxide. It is an alternative and supplement to the existing standard MOS technology, wherein the insulation employed is a nitride-oxide layer. It is used in non-volatile computer memory.

References

  1. 1 2 3 Hodgson, Peter D.; Lane, Dominic; Carrington, Peter J.; Delli, Evangelia; Beanland, Richard; Hayne, Manus (2022-01-05). "ULTRARAM: A Low-Energy, High-Endurance, Compound-Semiconductor Memory on Silicon". Advanced Electronic Materials. 8 (4): 2101103. doi: 10.1002/aelm.202101103 . ISSN   2199-160X. S2CID   248070399.
  2. 1 2 "Mass production of revolutionary computer memory moves closer with ULTRARAM on silicon wafers for the first time". ScienceDaily. Retrieved 2022-04-08.
  3. "'UltraRAM' breakthrough could merge storage and RAM into one component". PCWorld. Retrieved 2022-04-08.
  4. Mark Tyson (2022-01-10). "UltraRAM Breakthrough Brings New Memory and Storage Tech to Silicon". Tom's Hardware. Retrieved 2022-04-08.
  5. Mark Tyson (2023-09-26). "UltraRAM Demos Prototype Chip, Secures Funding to Validate Commercial Potential". Tom's Hardware. Retrieved 2023-09-26.
  6. Chang, S. W.; Li, Xu; Oxland, R.; Wang, S. W.; Wang, C. H.; Contreras-Guerrero, R.; Bhuwalka, K. K.; Doornbos, G.; Vasen, T.; Holland, M. C.; Vellianitis, G. (30 January 2014). "InAs N-MOSFETs with record performance of Ion = 600 μA/μm at Ioff = 100 nA/μm (Vd = 0.5 V)". 2013 IEEE International Electron Devices Meeting. pp. 16.1.1–16.1.4. doi:10.1109/IEDM.2013.6724639. ISBN   978-1-4799-2306-9. S2CID   10847457.
  7. "Flash Memory Summit Announces 2023 Best of Show Award Winners". kalkinemedia.com. 2023-08-12. Retrieved 2023-09-28.