Veliger

Last updated
9 day old veliger of the nudibranch Tritonia diomedea with various organs and structures labeled. Larval size about 200 um on its long axis. 9d old veliger larva of the nudibranch Tritonia diomedea.jpg
9 day old veliger of the nudibranch Tritonia diomedea with various organs and structures labeled. Larval size about 200 um on its long axis.
Veliger of sea hare Dolabrifera dolabrifera, with two rows of cilia visible Dolabrifera5.jpg
Veliger of sea hare Dolabrifera dolabrifera , with two rows of cilia visible

A veliger is the planktonic larva of many kinds of sea snails and freshwater snails, as well as most bivalve molluscs (clams) and tusk shells.

Contents

Description

The veliger is the characteristic larva of the gastropod, bivalve and scaphopod taxonomic classes. It is produced following either the embryonic or trochophore larval stage of development. In bivalves the veliger is sometimes referred to as a D-stage (early in its development) or pediveliger (late in its development) larva. This stage in the life history of these groups is a free-living planktonic organism; this mode of life potentially enhances dispersal to new regions far removed from the adult mollusks that produced the larvae.

The general structure of the veliger includes a shell that surrounds the visceral organs of the larva (e.g., digestive tract, much of the nervous system, excretory organs) and a ciliated velum that extends beyond the shell as a single or multi-lobed structure used for swimming and particulate food collection: veliger signifies "velum bearer." The larva may have, or may develop, a foot that will be used by the newly settled veliger as it moves about and searches for an appropriate place to metamorphose.

Following metamorphosis, the foot may be used by the juvenile mollusk to move about on the seabed (in gastropods) or in the seabed (in some bivalves). The velum and foot of the veliger can be retracted into the shell to protect these structures from predators or mechanical damage.

Life cycle

Veligers hatch from egg capsules or develop from an earlier, free-swimming trochophore larval stage. In those species where the veliger hatches from an egg capsule, it will pass through the trochophore stage while in the egg capsule.

Veligers mature to a point called "competence" where they settle to the substratum and metamorphose to become the juvenile stage. During metamorphosis they lose their velum, and undergo external and internal changes that produce the juvenile.

Feeding or non-feeding veligers are possible, depending on which species has produced them. In a feeding veliger, the newly hatched larval stage is, in most cases, relatively "undeveloped" and must feed on phytoplankton for weeks to months to develop to the point where it can metamorphose. During the larval period, the veliger grows and develops the organ systems needed for the benthic life of a juvenile. "Non-feeding" veligers use yolk stored in the egg as an energy source for development. In such cases, the organ systems necessary for juvenile life develop either during the embryonic period and/or during a usually brief larval stage. Non-feeding veliger larvae are generally thought to metamorphose to the juvenile stage relatively quickly; however, in some cases such larvae can feed secondarily and thus have the potential to persist in the plankton for long periods. [1]

Metamorphosis of feeding and non-feeding competent larvae is usually induced by a chemical cue characteristic of the proper habitat for the juvenile. In gastropods, this chemical cue is often a substance produced by the juvenile or adult food source. In bivalves, the chemical cue may be produced by bacteria specific to the type of biofilm growing in the adult habitat. As a result of this inductive response the veliger will metamorphose in a habitat where it can successfully feed and grow to adulthood.

Veliger of gastropods

The veliger is the second larval stage in the development of gastropods, following the earlier trochophore stage. In some species, including virtually all pulmonates, the veliger stage is passed within the egg capsule and the hatching stage is a juvenile rather than a free-living larva. In species with a larval stage, the veliger is exclusively aquatic. Free-living veliger larvae typically feed on phytoplankton; however, the larvae of some species are lecithotrophic (nourished by yolk from the egg that is retained within their bodies) and do not need to feed. In at least some cases, lecithotrophic veligers can also feed on phytoplankton. [1]

Unlike the trochophore, the newly hatched veliger may have or will develop many of the characteristic features of the adult including such structures as a muscular foot, eyes, rhinophores, a fully developed mouth, and a spiral shell (in fact, the veliger of nudibranchs has a shell, although the adult does not). Unlike the adult, however, the veliger has two ciliated semi-circular structures resembling fins or wings. These are collectively referred to as the velum and are the larva's main means of propulsion and particulate food collection.

The torsion of the visceral mass so distinctive of many gastropods occurs during the veliger stage. This sudden rotation of the bodily organs relative to the rest of the animal may take anywhere from three minutes to ten days, depending on species.

The length of the veliger stage in the natural environment is unknown and undoubtedly variable; however, in the lab, veligers of some species become competent to metamorphose in anywhere from a few days (lecithotrophic larvae) to a month or more after hatching (planktotrophic larvae). The feeding larvae of some species have been cultured for over a year and have still retained the ability to metamorphose. As the veliger stage reaches metamorphic competence, the foot becomes sufficiently developed to allow crawling on the substratum and internal development has established the organ systems necessary for juvenile life. In many species, induction of metamorphosis occurs as a sensory response to a chemical cue indicative of the juvenile and/or adult habitat. Often this cue (the inducer) is a water-soluble chemical secreted by the adult food. Induction of metamorphosis results in the larva settling to the substratum. This settlement may be followed by a "searching" phase as the larva apparently looks for an appropriate place to metamorphose. When metamorphosis occurs, the velum is lost, and the newly metamorphosed juvenile adopts its slug-like adult form. [2]

Whole development of veliger of nudibranch Fiona pinnata :

Echinospira

Some prosobranch gastropod veliger larvae are called Echinospiras because they have two shells, the adult shell, and an extra shell called an Echinospira or scaphoconcha. It is described in detail at this link. [3]

Veliger of bivalves

Like gastropods, the veliger of bivalves typically follows a free-living trochophore stage. Shipworms, however, hatch directly as veligers, with the trochophore being an embryonic stage within the egg capsule. Many freshwater species go further, with the veliger also remaining within the egg capsule, and only hatching after metamorphosing into the adult form.

The shell of a bivalve veliger first appears as a single structure along the dorsal surface of the larva. This grows around the veliger's body, becoming folded into two valves similar to the adult condition. The velum is a single circular structure that projects from between the valves, in front of the small foot. As in the gastropods, the veligers of bivalves may either feed on phytoplankton or survive off yolk retained from the egg. In plankton feeding veligers, the larva can undergo considerable growth. As this occurs, the shell (known as a prodissoconch) and structures such as the larval foot, velum and visceral organs increase in size. As is the case for planktotrophic gastropod veligers, the larvae continue to feed and grow until they develop the organs and systems necessary for metamorphosis to the juvenile stage. At this point, the larvae are considered competent (able to metamorphose) and can respond to a chemical cue indicative of the adult habitat. In bivalves, this cue may be released by bacteria in biofilms characteristic of an appropriate adult environment.

During metamorphosis, the veliger sheds its velum and, depending on species, may secrete an attachment structure called a byssus that anchors it to the substratum. Some species spend considerable time searching for an ideal habitat before metamorphosing, but others may settle on the nearest suitable substrate. [2]

Veliger of scaphopods

The scaphopods, or tusk shells, have a veliger larva very similar to that of bivalves, despite the great difference in the appearance of the adults. The shell develops in a similar way, developing a bi-lobed form that surrounds the larval body. However, unlike bivalves, this never splits into two, and, in fact, fuses along the ventral margin, eventually becoming a tube that encloses the length of the body, and is open at both ends.

The scaphopod veliger is free-living, and metamorphosis is marked by a great elongation of the body, in order to assume the adult form. [2]

See also

Related Research Articles

<span class="mw-page-title-main">Metamorphosis</span> Profound change in body structure during the postembryonic development of an organism

Metamorphosis is a biological process by which an animal physically develops including birth transformation or hatching, involving a conspicuous and relatively abrupt change in the animal's body structure through cell growth and differentiation. Some insects, fish, amphibians, mollusks, crustaceans, cnidarians, echinoderms, and tunicates undergo metamorphosis, which is often accompanied by a change of nutrition source or behavior. Animals can be divided into species that undergo complete metamorphosis ("holometaboly"), incomplete metamorphosis ("hemimetaboly"), or no metamorphosis ("ametaboly").

<span class="mw-page-title-main">Larva</span> Juvenile form of distinct animals before metamorphosis

A larva is a distinct juvenile form many animals undergo before metamorphosis into adults. Animals with indirect development such as insects, amphibians, or cnidarians typically have a larval phase of their life cycle.

<span class="mw-page-title-main">Eastern oyster</span> Species of bivalve

The eastern oyster —also called the Atlantic oyster, American oyster, or East Coast oyster—is a species of true oyster native to eastern North and South America. Other names in local or culinary use include the Wellfleet oyster, Virginia oyster, Malpeque oyster, Blue Pointoyster, Chesapeake Bay oyster, and Apalachicola oyster. C. virginica ranges from northern New Brunswick south through parts of the West Indies to Venezuela. It is farmed in all of the Maritime provinces of Canada and all Eastern Seaboard and Gulf states of the United States, as well as Puget Sound, Washington, where it is known as the Totten Inlet Virginica. It was introduced to the Hawaiian Islands in the 19th century and is common in Pearl Harbor.

Holometabolism, also called complete metamorphosis, is a form of insect development which includes four life stages: egg, larva, pupa, and imago. Holometabolism is a synapomorphic trait of all insects in the superorder Endopterygota. Immature stages of holometabolous insects are very different from the mature stage. In some species the holometabolous life cycle prevents larvae from competing with adults because they inhabit different ecological niches. The morphology and behavior of each stage are adapted for different activities. For example, larval traits maximize feeding, growth, and development, while adult traits enable dispersal, mating, and egg laying. Some species of holometabolous insects protect and feed their offspring. Other insect developmental strategies include ametabolism and hemimetabolism.

<i>Teredo navalis</i> Species of bivalve

Teredo navalis, commonly called the naval shipworm or turu, is a species of saltwater clam, a marine bivalve mollusc in the family Teredinidae. This species is the type species of the genus Teredo. Like other species in this family, this bivalve is called a shipworm because it resembles a worm in general appearance while at the anterior end it has a small shell with two valves, and it is adept at boring through wood.

<span class="mw-page-title-main">Protoconch</span> Embryonic or larval shell of some molluscs

A protoconch is an embryonic or larval shell which occurs in some classes of molluscs, e.g., the initial chamber of an ammonite or the larval shell of a gastropod. In older texts it is also called "nucleus". The protoconch may sometimes consist of several whorls, but when this is the case, the whorls show no growth lines.

Marine larval ecology is the study of the factors influencing dispersing larvae, which many marine invertebrates and fishes have. Marine animals with a larva typically release many larvae into the water column, where the larvae develop before metamorphosing into adults.

<i>Haliotis asinina</i> Species of gastropod

Haliotis asinina, common name the ass's-ear abalone, is a fairly large species of sea snail, a tropical gastropod mollusk in the family Haliotidae, the abalones, also known as ormers or paua. Both the common name and the scientific name are based on the shape of the shell, which is long, narrow and curved, resembling the shape of a donkey's ear.

<i>Melibe leonina</i> Species of gastropod

Melibe leonina, commonly referred to as the hooded nudibranch, lion nudibranch, or lion's mane nudibranch, is a species of predatory nudibranch in the family Tethydidae.

<i>Phyllaplysia taylori</i> Species of gastropod

Phyllaplysia taylori, synonym Phyllaplysia zostericola, common names the "eelgrass sea hare" and "Taylor's sea hare", is a species of sea slug, specifically a sea hare, a marine gastropod mollusk in the family Aplysiidae, the sea hares.

<i>Julia exquisita</i> Species of gastropod

Julia exquisita is a small species of sea snail with a green bivalve shell. It is a marine gastropod mollusk in the family Juliidae.

<i>Cymbiola nobilis</i> Species of gastropod

Cymbiola nobilis is a species of sea snail, a marine gastropod mollusk in the family Volutidae, the volutes. The snail's shell is commonly collected in the sea shell trade, which has resulted in overharvesting of the snail.

<span class="mw-page-title-main">Crustacean larva</span> Crustacean larval and immature stages between hatching and adult form

Crustaceans may pass through a number of larval and immature stages between hatching from their eggs and reaching their adult form. Each of the stages is separated by a moult, in which the hard exoskeleton is shed to allow the animal to grow. The larvae of crustaceans often bear little resemblance to the adult, and there are still cases where it is not known what larvae will grow into what adults. This is especially true of crustaceans which live as benthic adults, more-so than where the larvae are planktonic, and thereby easily caught.

<i>Macrostrombus costatus</i> Species of sea snail

Macrostrombus costatus, formerly known as Strombus costatus and Lobatus costatus, or commonly known as the milk conch, is a species of large sea snail, a marine gastropod mollusk in the family Strombidae, the true conchs. They are an edible species and important food source for the inhabitants of where they are found. Conchs are most notable for their medium to large-sized ornamental shells. Milk conchs are dispersed among the tropical waters of the Atlantic Ocean, along the coasts and islands of North, Central, and South America.

Limacina retroversa is a distinct species of swimming planktonic gastropods, belonging to a group of predatory sea snails known as sea butterflies (Thecosomata). The name Limacina retroversa describes the unique morphology of this sea snail, including its slug-like body and coiled, backwards-turning shell. They are typically found in the epipelagic zone of cold, polar waters, but can be found worldwide, in any ocean. L. retroversa are currently under threat, as their numbers are decreasing due to rising global carbon levels and other human-caused climate threats.

<span class="mw-page-title-main">Prodissoconch</span>

A prodissoconch is an embryonic or larval shell which is present in the larva of a bivalve mollusk. The prodissoconch is often but not always smooth, and has no growth lines. It is sometimes still present and visible in the adult shell, if there has been no erosion of the shell in that area.

<i>Kelletia kelletii</i> Species of gastropod

Kelletia kelletii, common name Kellet's whelk, is a species of large sea snail, a whelk, a marine gastropod mollusc in the family Buccinidae, the true whelks.

<span class="mw-page-title-main">Juvenile fish</span> Young fish

Fish go through various life stages between fertilization and adulthood. The life of a fish start as spawned eggs which hatch into immotile larvae. These larval hatchlings are not yet capable of feeding themselves and carry a yolk sac which provides stored nutrition. Before the yolk sac completely disappears, the young fish must mature enough to be able to forage independently. When they have developed to the point where they are capable of feeding by themselves, the fish are called fry. When, in addition, they have developed scales and working fins, the transition to a juvenile fish is complete and it is called a fingerling, so called as they are typically about the size of human fingers. The juvenile stage lasts until the fish is fully grown, sexually mature and interacting with other adult fish.

<i>Berghia stephanieae</i> Species of gastropod

Berghia stephanieae is a species of sea slug, an aeolid nudibranch. It is a marine gastropod mollusc in the family Aeolidiidae. It was previously known as Aeolidiella stephanieae.

Thyonicola americana is a species of parasitic sea snail, a marine gastropod mollusc in the family Eulimidae. It infests the sea cucumbers Eupentacta quinquesemita and Eupentacta pseudoquinquesemita in Puget Sound and other parts of the northeastern Pacific Ocean.

References

  1. 1 2 Kempf, S.C.; Hadfield, M.G. (1985). "Planktotrophy by the lecithotrophic larvae of a nudibranch, Phestilla sibogae (Gastropoda)". The Biological Bulletin . 169 (1): 119–130. doi:10.2307/1541392. JSTOR   1541392.
  2. 1 2 3 Barnes, Robert D. (1982). Invertebrate Zoology . Philadelphia, PA: Holt-Saunders International. pp. 372–375. ISBN   0-03-056747-5.
  3. Lebour, Marie V. (1935). "10. The Echinospira Larvæ (Mollusca) of Plymouth". Proceedings of the Zoological Society of London. 105: 163–174. doi:10.1111/j.1469-7998.1935.tb06239.x.

Further reading