WAIS Divide

Last updated
WAIS Divide Camp
Camp
Antarctica WAIS Divide Field Camp 06.jpg
WAIS Divide Field Camp in 2012
WAISDivideReg.jpeg
Detailed Map of the WAIS Divide Region
Coordinates: 79°28′05″S112°05′10″W / 79.468°S 112.086°W / -79.468; -112.086
CountryFlag of the United States.svg  United States
Location in AntarcticaWAIS Divide
Antarctica
Administered by National Science Foundation
Established2005 (2005)
Elevation
1,797 m (5,896 ft)
TypeSeasonal
StatusOperational
WAIS Divide airfield
LC-130 WAIS Divide Antarctica.jpg
New York Air National Guard LC-130H being unloaded by a Caterpillar loader at the WAIS Divide field camp.
Summary
Airport typePrivate
Location West Antarctic Ice Sheet
Opened2005 (2005)
Elevation  AMSL 5,895 ft / 1,797 m
Coordinates 79°28′25″S112°04′02″W / 79.473695°S 112.067194°W / -79.473695; -112.067194
Map
Antarctica location map.svg
Airplane silhouette.svg
WAIS Divide airfield
Location of airfield in Antarctica
Runways
Direction LengthSurface
ftm
11,4803,500Snow

The WAIS Divide is the ice flow divide on the West Antarctic Ice Sheet (WAIS) which is a linear boundary that separates the region where the ice flows to the Ross Sea, from the region where the ice flows to the Weddell Sea. It is similar to a continental hydrographic divide.

Contents

Ice core project

The WAIS Divide ice core project (West Antarctic Ice Sheet Divide ice core project) investigated past climate changes, ice sheet dynamics and cryobiology. The project was completed by the United States Antarctic Program (USAP) and was funded by the National Science Foundation (NSF). The focus of the project was to develop records spanning the last ~ 80,000 years of the concentration of greenhouse gases in the atmosphere and Antarctic climate, and to do this with the highest possible time resolution. The project is best known for producing records of atmospheric carbon dioxide and methane with high time resolution and dating accuracy. This was accomplished by collecting and analyzing an ice core from a site named WAIS Divide (79.468° S 112.086° W) that is on the WAIS ice flow divide. This can cause confusion because the name "WAIS Divide" can refer to the WAIS Divide ice flow divide or the WAIS Divide drill site that is at a single spot on the ice flow divide. [1]

Project history

The drilling facilities at the WAIS Divide field camp Antarctica WAIS Divide Field Camp 16.jpg
The drilling facilities at the WAIS Divide field camp

Site selection started in 2000 with the goal of finding the best place meeting the following requirements.

Site preparation started in the 2005/2006 season with the construction of the skiway, and a steel arch shelter for drilling and core processing. Camp logistics was provided by Raytheon Polar Services Company and the air transport by the New York Air National Guard using LC-130 aircraft. The deep coring started in the 2006/2007 season using the Deep Ice Sheet Coring (DISC) drill developed and operated by the Ice Drilling Design and Operations group at the University of Wisconsin, Madison. The coring was stopped in December 2011 at a depth of 3,405 m, which is ~ 50 m above the bottom of the ice sheet. The last 50 m of ice was left in place to provide a barrier between the borehole and the pristine aqueous basal environment. The ice at the bottom of the hole fell as snow 67,748 years ago. In the 2012-2013 season additional core was collected in zones of high scientific interest. This was done by drilling through the side of the main bore hole and coring along a path nearly parallel to the main core. [1]

The ice core was transported to the National Ice Core Laboratory in Denver, Colorado where it was sampled and portions were distributed to 33 institutions for analysis. The analysis included the physical, chemical and isotopic properties of the gases trapped in the ice, the soluble and insoluble material in the melted ice, and the water from the melted ice. [1]

Results

Camp at the WAIS Divide Site WAIS-Flag-and-Camp.jpeg
Camp at the WAIS Divide Site

The core was dated using two methods. The top was dated by counting annual layers to an age of 31,200 years ago. [3] The bottom was dated using stratigraphic methods to an age of 67,748, years at the bottom of the core. [4] The dating was more accurate than other Antarctic ice cores and enables a better understanding of the causes of previous climate changes. This information helps improve predictions of future climate changes.

The project developed information on:

Paleoceanography will publish a special edition that includes all WAIS Divide related AGU publications as April 2016.

Additional information, including a complete list of all the publications related to the project, is available at: http://waisdivide.unh.edu. [1]

Outreach

Project leadership

Leadership for the project was provided by the following people:

See also

Related Research Articles

<span class="mw-page-title-main">Lake Vostok</span> Antarcticas largest known subglacial lake

Lake Vostok is the largest of Antarctica's 675 known subglacial lakes. Lake Vostok is located at the southern Pole of Cold, beneath Russia's Vostok Station under the surface of the central East Antarctic Ice Sheet, which is at 3,488 m (11,444 ft) above mean sea level. The surface of this fresh water lake is approximately 4,000 m (13,100 ft) under the surface of the ice, which places it at approximately 500 m (1,600 ft) below sea level.

<span class="mw-page-title-main">Ice core</span> Cylindrical sample drilled from an ice sheet

An ice core is a core sample that is typically removed from an ice sheet or a high mountain glacier. Since the ice forms from the incremental buildup of annual layers of snow, lower layers are older than upper ones, and an ice core contains ice formed over a range of years. Cores are drilled with hand augers or powered drills; they can reach depths of over two miles (3.2 km), and contain ice up to 800,000 years old.

<span class="mw-page-title-main">Ice sheet</span> Large mass of glacial ice

In glaciology, an ice sheet, also known as a continental glacier, is a mass of glacial ice that covers surrounding terrain and is greater than 50,000 km2 (19,000 sq mi). The only current ice sheets are the Antarctic ice sheet and the Greenland ice sheet. Ice sheets are bigger than ice shelves or alpine glaciers. Masses of ice covering less than 50,000 km2 are termed an ice cap. An ice cap will typically feed a series of glaciers around its periphery.

<span class="mw-page-title-main">Deep Sea Drilling Project</span> Ocean drilling research program between 1968–1983

The Deep Sea Drilling Project (DSDP) was an ocean drilling project operated from 1968 to 1983. The program was a success, as evidenced by the data and publications that have resulted from it. The data are now hosted by Texas A&M University, although the program was coordinated by the Scripps Institution of Oceanography at the University of California, San Diego. DSDP provided crucial data to support the seafloor spreading hypothesis and helped to prove the theory of plate tectonics. DSDP was the first of three international scientific ocean drilling programs that have operated over more than 40 years. It was followed by the Ocean Drilling Program (ODP) in 1985, the Integrated Ocean Drilling Program in 2004 and the present International Ocean Discovery Program in 2013.

<span class="mw-page-title-main">West Antarctic Ice Sheet</span> Segment of the continental ice sheet that covers West (or Lesser) Antarctica

The West Antarctic Ice Sheet (WAIS) is the segment of the continental ice sheet that covers West Antarctica, the portion of Antarctica on the side of the Transantarctic Mountains that lies in the Western Hemisphere. It is classified as a marine-based ice sheet, meaning that its bed lies well below sea level and its edges flow into floating ice shelves. The WAIS is bounded by the Ross Ice Shelf, the Ronne Ice Shelf, and outlet glaciers that drain into the Amundsen Sea.

<span class="mw-page-title-main">Marie Byrd Land</span> Unclaimed West Antarctic region

Marie Byrd Land (MBL) is an unclaimed region of Antarctica. With an area of 1,610,000 km2 (620,000 sq mi), it is the largest unclaimed territory on Earth. It was named after the wife of American naval officer Richard E. Byrd, who explored the region in the early 20th century.

<span class="mw-page-title-main">Antarctic ice sheet</span> Earths southern polar ice cap

The Antarctic ice sheet is a continental glacier covering 98% of the Antarctic continent, with an area of 14 million square kilometres and an average thickness of over 2 kilometres (1.2 mi). It is the largest of Earth's two current ice sheets, containing 26.5 million cubic kilometres of ice, which is equivalent to 61% of all fresh water on Earth.

<span class="mw-page-title-main">Antarctic oscillation</span> Climatic cycle over the Southern Ocean

The Antarctic oscillation, also known as the Southern Annular Mode (SAM), is a low-frequency mode of atmospheric variability of the southern hemisphere that is defined as a belt of strong westerly winds or low pressure surrounding Antarctica which moves north or south as its mode of variability.

<span class="mw-page-title-main">Mount Takahe</span> Shield volcano in the Antarctic continent

Mount Takahe is a 3,460-metre-high (11,350 ft) snow-covered shield volcano in Marie Byrd Land, Antarctica, 200 kilometres (120 mi) from the Amundsen Sea. It is a c. 30-kilometre-wide (19 mi) mountain with parasitic vents and a caldera up to 8 kilometres (5 mi) wide. Most of the volcano is formed by trachytic lava flows, but hyaloclastite is also found. Snow, ice, and glaciers cover most of Mount Takahe. With a volume of 780 km3 (200 cu mi), it is a massive volcano; the parts of the edifice that are buried underneath the West Antarctic Ice Sheet are probably even larger. It is part of the West Antarctic Rift System along with eighteen other known volcanoes.

<span class="mw-page-title-main">Global temperature record</span> Fluctuations of the Earths temperature over time

The global temperature record shows the fluctuations of the temperature of the atmosphere and the oceans through various spans of time. There are numerous estimates of temperatures since the end of the Pleistocene glaciation, particularly during the current Holocene epoch. Some temperature information is available through geologic evidence, going back millions of years. More recently, information from ice cores covers the period from 800,000 years before the present time until now. A study of the paleoclimate covers the time period from 12,000 years ago to the present. Tree rings and measurements from ice cores can give evidence about the global temperature from 1,000-2,000 years before the present until now. The most detailed information exists since 1850, when methodical thermometer-based records began. Modifications on the Stevenson-type screen were made for uniform instrument measurements around 1880.

<span class="mw-page-title-main">European Project for Ice Coring in Antarctica</span> Research project

The European Project for Ice Coring in Antarctica (EPICA) is a multinational European project for deep ice core drilling in Antarctica. Its main objective is to obtain full documentation of the climatic and atmospheric record archived in Antarctic ice by drilling and analyzing two ice cores and comparing these with their Greenland counterparts (GRIP and GISP). Evaluation of these records will provide information about the natural climate variability and mechanisms of rapid climatic changes during the last glacial epoch.

<span class="mw-page-title-main">Greenland ice core project</span> Project to drill through Greenland ice sheet

The Greenland Ice Core Project (GRIP) was a research project organized through the European Science Foundation (ESF). The project ran from 1989 to 1995, with drilling seasons from 1990 to 1992. In 1988, the project was accepted as an ESF-associated program, and the fieldwork was started in Greenland in the summer of 1989.

<span class="mw-page-title-main">Abrupt climate change</span> Form of climate change

An abrupt climate change occurs when the climate system is forced to transition at a rate that is determined by the climate system energy-balance. The transition rate is more rapid than the rate of change of the external forcing, though it may include sudden forcing events such as meteorite impacts. Abrupt climate change therefore is a variation beyond the variability of a climate. Past events include the end of the Carboniferous Rainforest Collapse, Younger Dryas, Dansgaard–Oeschger events, Heinrich events and possibly also the Paleocene–Eocene Thermal Maximum. The term is also used within the context of climate change to describe sudden climate change that is detectable over the time-scale of a human lifetime, possibly as the result of feedback loops within the climate system or tipping points.

<span class="mw-page-title-main">Dome F</span> Antarctic base in Queen Maud Land

Dome Fuji, also called Dome F or Valkyrie Dome, is an Antarctic base located in the eastern part of Queen Maud Land. With an altitude of 3,810 metres (12,500 ft) above sea level, it is the second-highest summit or ice dome of the East Antarctic Ice Sheet and represents an ice divide. Dome F is the site of Dome Fuji Station, a research station operated by Japan.

Jean-Robert Petit studied chemistry and physics at the University of Grenoble and received a PhD in 1984 in paleoclimatology on the study of the aeolian dust record from Antarctic ice cores.

An ice divide is the boundary on an ice sheet, ice cap or glacier separating opposing flow directions of ice, analogous to a water divide. Ice divides are important for geochronological investigations that use ice cores, since such coring is typically made at highest point of an ice sheet dome to avoid disturbances arising from horizontal ice movement. Ice divides are used for looking at how the atmosphere varied over time. Coring at dome peaks increases precision of reconstructions as it is the place where horizontal motion is at its least. The Raymond Effect operates at ice divides, creating anticlines in the radar-detected isochrones, allowing greater capture of older ice when coring.

<span class="mw-page-title-main">Siple Dome</span> Geographic feature in Antarctica

Siple Dome is an ice dome approximately 100 km wide and 100 km long, located 130 km east of Siple Coast in Antarctica. Charles Bentley and Robert Thomas established a "strain rosette" on this feature to determine ice movement in 1973–74. They referred to the feature as Siple Dome because of its proximity to Siple Coast.

Dorthe Dahl-Jensen is a Danish palaeoclimatology professor and researcher at the Centre for Ice and Climate at the Niels Bohr Institute, University of Copenhagen in Denmark. Her primary field is the study of ice and climate, specifically the reconstruction of climate records from ice cores and borehole data; ice flow models to date ice cores; continuum mechanical properties of anisotropic ice; ice in the solar system; and the history and evolution of the Greenland Ice Sheet.

<span class="mw-page-title-main">Jérôme Chappellaz</span> French geochemist and paleoclimatologist (born 1964)

Jérôme Chappellaz is a French glaciologist, geochemist and paleoclimatologist who is director of the French Polar Institute. A senior researcher at France's National Center for Scientific Research (CNRS), he is a co-founder and chairman of the Ice Memory Foundation.

References

  1. 1 2 3 4 "West Antarctic Ice Sheet Divide Ice Core". WAIS Divide. Desert Research Institute and University of New Hampshire. Retrieved August 17, 2018.
  2. Morse, D.L., Blankenship, D.D., Waddington, E.D. and Neumann, T.A. (2002) A site for deep ice coring in West Antarctica: Results from aerogeophysical surveys and thermal-kinematic modeling; Annals of Glaciology, 35, p. 36 - 44; doi : 10.3189/172756402781816636
  3. Sigl, M., Ferris, D., Fudge, T.J., Winstrup, M., Cole-Dai, J., McConnell, J.R., Taylor, K.C., Welten, K.C., Woodruff, T.E., Adolphi, F., Brook, E.J., Bisiaux, M., Buizert, C., Caffee, M.W., Dunbar, N., Edwards, R., Geng, L., Iverson, N., Koffman, B., Layman, L., Maselli, O.J., McGwire, K., Muscheler, R., Nishiizumi, K., Pasteris, D.R., Rhodes, R.H. and Sowers, T.A. (2016) The WAIS Divide deep ice core WD2014 chronology - Part 2: Annual-layer counting (0-31 ka BP); Climate of the Past, 12, p. 769 - 786; doi : 10.5194/cp-12-769-2016
  4. Buizert, C., Cuffey, K.M., Severinghaus, J.P., Baggenstos, D., Fudge, T.J., Steig, E.J., Markle, B.R., Winstrup, M., Rhodes, R.H., Brook, E.J., Sowers, T.A., Clow, G.D., Cheng, H., Edwards, R.L., Sigl, M., McConnell, J.R. and Taylor, K.C. (2015) The WAIS Divide deep ice core WD2014 chronology - Part 1: Methane synchronization (68-31 ka BP) and the gas age-ice age difference; Climate of the Past, 11, p. 153 - 173; doi : 10.5194/cp-11-153-2015
  5. WAIS Divide Project Members (2015) Precise interpolar phasing of abrupt climate change during the last ice age; Nature, 520, p. 661 - 665; doi : 10.1038/nature14401
  6. WAIS Divide Project Members (2013). "Onset of deglacial warming in West Antarctica driven by local orbital forcing". Nature. 500 (7463): 440–444. Bibcode:2013Natur.500..440W. doi:10.1038/nature12376. PMID   23945585. S2CID   4417100 . Retrieved 11 Oct 2023.
  7. Marcott, S.A.; Bauska, T.K.; Buizert, C.; Steig, E.J.; Rosen, J.L.; Cuffey, K.M.; Fudge, T.J.; Severinghaus, J.P.; Ahn, J.; Kalk, M.; McConnell, J.R.; Sowers, T.; Taylor, K.C.; White, J.W.C.; Brook, E.J. (2014). "Centennial-scale changes in the global carbon cycle during the last deglaciation". Nature. 514 (7524): 616–619. Bibcode:2014Natur.514..616M. doi:10.1038/nature13799. PMID   25355363. S2CID   4401982 . Retrieved 11 Oct 2023.
  8. Rhodes, R.H., Brook, E.J., Chiang, J.C.H., Blunier, T., Maselli, O.J., McConnell, J.M., Romanini, D. and Severinghaus, J.P. (2015) Enhanced tropical methane production in response to iceberg discharge in the North Atlantic; Science, 348(6238), p. 1016 - 1019; doi : 10.1126/science.1262005

79°28′03″S112°05′11″W / 79.467472°S 112.086389°W / -79.467472; -112.086389