WASP-5

Last updated
WASP-5
Observation data
Epoch J2000.0        Equinox J2000.0
Constellation Phoenix
Right ascension 23h 57m 23.75647s [1]
Declination −41° 16 37.7437 [1]
Apparent magnitude  (V)12.146 [2]
Characteristics
Evolutionary stage Main sequence
Spectral type G4V [3]
Apparent magnitude  (B)12.808±0.02 [2]
Apparent magnitude  (V)12.146±0.01 [2]
Apparent magnitude  (J)10.949±0.022 [2]
Apparent magnitude  (H)10.650±0.025 [2]
Apparent magnitude  (K)10.598±0.023 [2]
Astrometry
Radial velocity (Rv)20.49±0.67 [1]  km/s
Proper motion (μ)RA: 7.406(14)  mas/yr [1]
Dec.: −16.072(14)  mas/yr [1]
Parallax (π)3.1883 ± 0.0150  mas [1]
Distance 1,023 ± 5  ly
(314 ± 1  pc)
Details [4]
Mass 1.033±0.045  M
Radius 1.088±0.040  R
Temperature 5770±65  K
Metallicity [Fe/H]0.090±0.090  dex
Rotation 16.20±0.40  d
Rotational velocity (v sin i)3.40±0.70 km/s
Age 5.84±1.86 [5]   Gyr
Other designations
TOI-250, TIC  184240683, WASP-5, GSC  08018-00199, 2MASS J23572375-4116377, DENIS J235723.7-411637, UCAC2 14323784 [2]
Database references
SIMBAD data
Extrasolar Planets
Encyclopaedia
data

WASP-5 is a magnitude 12 G-type main-sequence star located about 1,020 light-years (310 parsecs ) away in the Phoenix constellation. [2] The star is likely older than the Sun, slightly enriched in heavy elements and is rotating rapidly, being spun up by the tides raised by the giant planet on a close orbit. [5]

Contents

Planetary system

This star has one exoplanet, WASP-5b, detected by the SuperWASP project in 2007. [3]

The WASP-5 planetary system [4]
Companion
(in order from star)
Mass Semimajor axis
(AU)
Orbital period
(days)
Eccentricity Inclination Radius
b 1.590+0.053
−0.052
  MJ
0.02739±0.000391.62842953(52)<0.01285.8±1.1 ° 1.175±0.056  RJ

See also

Related Research Articles

WASP-6, also officially named Márohu, is a type-G yellow dwarf star located about 651 light-years away in the Aquarius constellation. Dim at magnitude 12, it is visible through a moderate sized amateur telescope. The star is about 80% of the size and mass of the Sun and it is a little cooler. Starspots in the WASP-6 system helped to refine the measurements of the mass and the radius of the planet WASP-6b.

<span class="mw-page-title-main">WASP-8</span> Star in the constellation of Sculptor

WASP-8 is a binary star system 294 light-years away. The star system is much younger than the Sun at 300 million to 1.2 billion years age, and is heavily enriched in heavy elements, having nearly twice the concentration of iron compared to the Sun.

WASP-10 is a star in the constellation Pegasus. The SuperWASP project has observed and classified this star as a variable star, perhaps due to the eclipsing planet.

<span class="mw-page-title-main">WASP-4</span> G-type main sequence star in the constellation Phoenix

WASP-4 is a G-type main-sequence star approximately 891 light-years away in the constellation of Phoenix. Despite its advanced age, the star is rotating rapidly, being spun up by the tides raised by a giant planet on a close orbit.

WASP-16 is a magnitude 11 yellow dwarf main sequence star, with characteristics similar to the Sun, located in the Virgo constellation.

WASP-49 is a yellow dwarf main-sequence star. Its surface temperature is 5600 K. WASP-49 is depleted of heavy elements relative to Sun, with metallicity Fe/H index of -0.23, meaning it has an abundance of iron 59% of the Sun's level.

<span class="mw-page-title-main">WASP-21</span> Star in the constellation Pegasus

WASP-21 is a G-type star that is reaching the end of its main sequence lifetime approximately 850 light years from Earth in the constellation of Pegasus. The star is relatively metal-poor, having 40% of heavy elements compared to the Sun. Kinematically, WASP-21 belongs to the thick disk of the Milky Way. It has an exoplanet named WASP-21b.

WASP-46 is a G-type main-sequence star about 1,210 light-years away. The star is older than the Sun and is strongly depleted in heavy elements compared to the Sun, having just 45% of the solar abundance. Despite its advanced age, the star is rotating rapidly, being spun up by the tides raised by a giant planet on a close orbit.

WASP-35 is a G-type main-sequence star about 660 light-years away. The star's age cannot be well constrained, but it is probably older than the Sun. WASP-35 is similar in concentration of heavy elements compared to the Sun.

WASP-72 is the primary of a binary star system. It is an F7 class dwarf star, with an internal structure just on the verge of the Kraft break. It is orbited by a planet WASP-72b. The age of WASP-72 is younger than the Sun at 3.55±0.82 billion years.

BD+00 316 is an ordinary star with a close-orbiting planetary companion in the equatorial constellation of Cetus. It is also known as WASP-71 since 2019; BD+00 316 is the stellar identifier from the Bonner Durchmusterung catalogue. With an apparent visual magnitude of 10.56, it is too faint to be visible to the naked eye. This star is located at a distance of 1,160 light-years based on parallax measurements, and is drifting further away with a heliocentric radial velocity of 7.7 km/s.

WASP-59 is a K-type main-sequence star about 379 light-years away. The star's age is essentially unconstrained by observations. WASP-59 is slightly depleted in heavy elements, having 70% of the solar abundance of iron. The star produces extremely low levels of ultraviolet light, indicating an absence of flare activity.

WASP-54, also known as BD+00 3088, is a binary star system about 825 light-years away. The primary, WASP-54A, is a F-type main-sequence star, accompanied by the red dwarf WASP-54B on a wide orbit. WASP-54 is depleted in heavy elements, having 55% of the solar abundance of iron. The age of WASP-54 is slightly older than the Sun's at 6.9+1.0
−1.9
billion years.

WASP-69, also named Wouri, is a K-type main-sequence star 164 light-years away. Its surface temperature is 4782±15 K. WASP-69 is slightly enriched in heavy elements compared to the Sun, with a metallicity Fe/H index of 0.10±0.01, and is much younger than the Sun at 2 billion years. The data regarding starspot activity of WASP-69 are inconclusive, but spot coverage of the photosphere may be very high.

WASP-75 is a F-type main-sequence star about 980 light-years away. The star is much younger than the Sun at approximately 2.9±0.2 billion years. WASP-75 is similar to the Sun in its concentration of heavy elements.

WASP-88 is a F-type main-sequence star. Its surface temperature is 6450±61 K. WASP-88 is similar to the Sun in its concentration of heavy elements, with a metallicity Fe/H index of 0.03±0.04, and is younger at an age of 3.0±1.3 billion years.

WASP-84, also known as BD+02 2056, is a G-type main-sequence star 327 light-years away in the constellation Hydra. Its surface temperature is 5350±31 K and is slightly enriched in heavy elements compared to the Sun, with a metallicity Fe/H index of 0.05±0.02. It is rich in carbon and depleted of oxygen. WASP-84's age is probably older than the Sun at 8.5+4.1
−5.5
billion years. The star appears to have an anomalously small radius, which can be explained by the unusually high helium fraction or by it being very young.

WASP-80 is a K-type main-sequence star about 162 light-years away. The star's age is much younger than the Sun's at 1.352±0.222 billion years. WASP-80 is similar to the Sun in concentration of heavy elements, although this measurement is highly uncertain.

References

  1. 1 2 3 4 5 6 Vallenari, A.; et al. (Gaia collaboration) (2023). "Gaia Data Release 3. Summary of the content and survey properties". Astronomy and Astrophysics. 674: A1. arXiv: 2208.00211 . Bibcode:2023A&A...674A...1G. doi: 10.1051/0004-6361/202243940 . S2CID   244398875. Gaia DR3 record for this source at VizieR.
  2. 1 2 3 4 5 6 7 8 "WASP-5". SIMBAD . Centre de données astronomiques de Strasbourg . Retrieved 14 December 2023.
  3. 1 2 Anderson, D.R.; Gillon, M.; Hellier, C.; Maxted, P. F. L.; Pepe, F.; Queloz, D.; Wilson, D. M.; Collier Cameron, A.; Smalley, B.; Lister, T. A.; Bentley, S. J.; Blecha, A.; Christian, D. J.; Enoch, B.; Hebb, L.; Horne, K.; Irwin, J.; Joshi, Y. C.; Kane, S. R.; Marmier, M.; Mayor, M.; Parley, N. R.; Pollacco, D. L.; Pont, F.; Ryans, R.; Ségransan, D.; Skillen, I.; Street, R. A.; Udry, S.; et al. (2008). "WASP-5b: a dense, very hot Jupiter transiting a 12th-mag Southern-hemisphere star". Monthly Notices of the Royal Astronomical Society: Letters. 387 (1): L4–L7. arXiv: 0801.1685 . Bibcode:2008MNRAS.387L...4A. doi:10.1111/j.1745-3933.2008.00465.x. S2CID   36741190.
  4. 1 2 Bonomo, A. S.; Desidera, S.; et al. (June 2017). "The GAPS Programme with HARPS-N at TNG. XIV. Investigating giant planet migration history via improved eccentricity and mass determination for 231 transiting planets". Astronomy & Astrophysics . 602: A107. arXiv: 1704.00373 . Bibcode:2017A&A...602A.107B. doi:10.1051/0004-6361/201629882. S2CID   118923163.
  5. 1 2 Maxted, P. F. L.; Serenelli, A. M.; Southworth, J. (2015), "A comparison of gyrochronological and isochronal age estimates for transiting exoplanet host stars", Astronomy & Astrophysics, 577: A90, arXiv: 1503.09111 , Bibcode:2015A&A...577A..90M, doi:10.1051/0004-6361/201525774, S2CID   53324330