WASP-96b

Last updated
WASP-96b
WASP-96b spectrum (JWST) mres.png
Spectrum of WASP-96b, taken by the James Webb Space Telescope
Discovery [1]
Discovered by Hellier et al. (WASP)
Discovery dateOctober 2013
Transit
Orbital characteristics [2]
0.0454±0.0013  AU
Eccentricity <0.11
3.4252602(27)  d
Inclination 85.60°±0.20°
Semi-amplitude 64.0+5.3
−4.8
  m/s
Physical characteristics [2]
Mean radius
1.200±0.060  RJ
Mass 0.490+0.049
−0.047
  MJ
Mean density
0.352+0.068
−0.059
  g/cm3
Temperature 1285 K [1]

    WASP-96b is a gas giant exoplanet. Its mass is 0.48 times that of Jupiter. It is 0.0453 AU from the class G star WASP-96, which it orbits every 3.4 days. It is about 1,140 light-years away from Earth, in the constellation Phoenix. It was discovered in 2013 by the Wide Angle Search for Planets (WASP).

    Contents

    WASP-96b orbits its Sun-like star WASP-96 every 3.4 Earth days at a distance just one-ninth of the distance between Mercury and the Sun. [3]

    The hot-Jupiter exoplanet was found via the transiting method by Coel Hellier et.al. in 2013 as part of the WASP-South survey. [1]

    Atmosphere

    WASP-96b's spectrum was one of the images featured in the initial science release from the James Webb Space Telescope in July 2022. [4] The spectrum confirmed the presence of water, as well as providing evidence for "clouds and hazes" within the planet's atmosphere. [3] Prior to this discovery, WASP-96b was thought to be free of clouds. [5] [6]

    While the light curve released confirms properties of the planet that had already been determined from other observations – the existence, size, and orbit of the planet – the transmission spectrum revealed previously hidden details of the atmosphere: the unambiguous signature of water, indications of haze, and evidence of clouds that were suspected based on prior observations. [7]

    A study in 2023 measured the abundance of certain chemical species in the atmosphere of WASP-96b as seen in the table below. [8] Models of the atmosphere with patchy clouds and hazes best describes the observations through the James Webb Space Telescope. [8]

    Chemical Species [8] log(VMR) [8] Concentration
    Water vapor -3.59+0.35
    0.35
    257 ppm
    Carbon monoxide -3.25+0.91
    5.06
    562 ppm
    Carbon dioxide -4.38+0.47
    0.57
    41.7 ppm
    Sodium -6.85+2.48
    3.10
    141 ppb
    Potassium -8.04+1.22
    1.71
    9.12 ppb

    See also

    Related Research Articles

    <span class="mw-page-title-main">Extraterrestrial atmosphere</span> Area of astronomical research

    The study of extraterrestrial atmospheres is an active field of research, both as an aspect of astronomy and to gain insight into Earth's atmosphere. In addition to Earth, many of the other astronomical objects in the Solar System have atmospheres. These include all the gas giants, as well as Mars, Venus and Titan. Several moons and other bodies also have atmospheres, as do comets and the Sun. There is evidence that extrasolar planets can have an atmosphere. Comparisons of these atmospheres to one another and to Earth's atmosphere broaden our basic understanding of atmospheric processes such as the greenhouse effect, aerosol and cloud physics, and atmospheric chemistry and dynamics.

    <span class="mw-page-title-main">HD 189733 b</span> Hot Jupiter exoplanet in the constellation Vulpecula

    HD 189733 b is an exoplanet in the constellation of Vulpecula approximately 64.5 light-years away from our Solar System. Astronomers in France discovered the planet orbiting the star HD 189733 on October 5, 2005, by observing its transit across the star's face. With a mass 11.2% higher than that of Jupiter and a radius 11.4% greater, HD 189733 b orbits its host star once every 2.2 days at an orbital speed of 152.0 kilometers per second, making it a hot Jupiter with poor prospects for extraterrestrial life.

    <span class="mw-page-title-main">WASP-4b</span> Extrasolar planet in the constellation Phoenix

    WASP-4b is an exoplanet, specifically a hot Jupiter, approximately 891 light-years away in the constellation of Phoenix.

    <span class="mw-page-title-main">WASP-6b</span> Extrasolar planet

    WASP-6b, also named Boinayel, is an exoplanet approximately 650 light years away in the constellation Aquarius. It was discovered in 2008, by the WASP survey, by astronomical transit across its parent star WASP-6. This planet orbits at only 4% of the Earth-Sun distance. The planet has a mass half that of Jupiter, but its insolation has forced a thermal expansion of its radius to greater than that of Jupiter. Thus, this planet is an inflated hot Jupiter. Starspots on the host star WASP-6 helped to refine the measurements of the mass and the radius of the planet.

    <span class="mw-page-title-main">WASP-17b</span> Hot-Jupiter exoplanet in the orbit of the star WASP-17

    WASP-17b is an exoplanet in the constellation Scorpius that is orbiting the star WASP-17. Its discovery was announced on 11 August 2009. It is the first planet discovered to have a retrograde orbit, meaning it orbits in a direction counter to the rotation of its host star. This discovery challenged traditional planetary formation theory. In terms of diameter, WASP-17b is one of the largest exoplanets discovered and at half Jupiter's mass, this made it the most puffy planet known in 2010. On 3 December 2013, scientists working with the Hubble Space Telescope reported detecting water in the exoplanet's atmosphere.

    <span class="mw-page-title-main">WASP-18b</span> Extrasolar planet that has an orbital period of less than one day

    WASP-18b is an exoplanet that is notable for having an orbital period of less than one day. It has a mass equal to 10 Jupiter masses, just below the boundary line between planets and brown dwarfs. Due to tidal deceleration, it is expected to spiral toward and eventually merge with its host star, WASP-18, in less than a million years. The planet is approximately 3.1 million km from its star, which is about 400 light-years from Earth. A team led by Coel Hellier, a professor of astrophysics at Keele University in England, discovered the exoplanet in 2009.

    WASP-18 is a magnitude 9 star located 400 light-years away in the Phoenix constellation of the southern hemisphere. It has a mass of 1.29 solar masses.

    <span class="mw-page-title-main">WASP-19b</span> Extrasolar planet in the constellation Vela

    WASP-19b, formally named Banksia, is an exoplanet, notable for possessing one of the shortest orbital periods of any known planetary body: 0.7888399 days or approximately 18.932 hours. It has a mass close to that of Jupiter, but by comparison has a much larger radius ; making it nearly the size of a low-mass star. It orbits the star WASP-19 in the Vela constellation. At the time of discovery it was the shortest period hot Jupiter discovered as planets with shorter orbital periods had a rocky, or metallic composition.

    <span class="mw-page-title-main">WASP-43b</span> Extrasolar planet in the constellation Sextans

    WASP-43b, formally named Astrolábos, is a transiting planet in orbit around the young, active, and low-mass star WASP-43 in the constellation Sextans. The planet is a hot Jupiter with a mass twice that of Jupiter, but with a roughly equal radius. WASP-43b was flagged as a candidate by the SuperWASP program, before they conducted follow-ups using instruments at La Silla Observatory in Chile, which confirmed its existence and provided orbital and physical characteristics. The planet's discovery was published on April 14, 2011.

    <span class="mw-page-title-main">TRAPPIST-1b</span> Rocky exoplanet orbiting TRAPPIST-1

    TRAPPIST-1b, also designated as 2MASS J23062928-0502285 b, is a mainly rocky exoplanet orbiting around the ultra-cool dwarf star TRAPPIST-1, located 40.7 light-years away from Earth in the constellation of Aquarius. The planet was detected using the transit method, where a planet dims the host star's light as it passes in front of it. It was first announced on May 2, 2016, and later studies were able to refine its physical parameters.

    <span class="mw-page-title-main">TRAPPIST-1c</span> Rocky exoplanet orbiting TRAPPIST-1

    TRAPPIST-1c, also designated as 2MASS J23062928-0502285 c, is a mainly rocky exoplanet orbiting around the ultracool dwarf star TRAPPIST-1, located 40.7 light-years away from Earth in the constellation Aquarius. It is the third most massive and third largest planet of the system, with about 131% the mass and 110% the radius of Earth. Its density indicates a primarily rocky composition, and observations by the James Webb Space Telescope announced in 2023 suggests against a thick CO2 atmosphere, however this does not exclude a thick abiotic oxygen-dominated atmosphere as is hypothesized to be common around red dwarf stars.

    <span class="mw-page-title-main">WASP-121b</span> Hot Jupiter exoplanet orbiting WASP-121

    WASP-121b, formally named Tylos, is an exoplanet orbiting the star WASP-121. WASP-121b is the first exoplanet found to contain water in an extrasolar planetary stratosphere. WASP-121b is in the constellation Puppis, and is about 858 light-years from Earth.

    WASP-121, also known as CD-38 3220, is a magnitude 10.4 star located approximately 858 light-years away in the constellation Puppis. WASP-121 has a mass and radius similar to the Sun's. It hosts one known exoplanet.

    <span class="mw-page-title-main">WASP-39b</span> Exoplanet in constellation of Virgo

    WASP-39b, officially named Bocaprins, is a "hot Jupiter" extrasolar planet discovered in February 2011 by the WASP project, notable for containing a substantial amount of water in its atmosphere. In addition WASP-39b was the first exoplanet found to contain carbon dioxide in its atmosphere, and likewise for sulfur dioxide.

    <span class="mw-page-title-main">HIP 65426 b</span> Hot Jupiter exoplanet orbiting HIP 65426

    HIP 65426 b, formally named Najsakopajk, is a super-Jupiter exoplanet orbiting the star HIP 65426. It was discovered on 6 July 2017 by the SPHERE consortium using the Spectro-Polarimetric High-Contrast Exoplanet Research (SPHERE) instrument belonging to the European Southern Observatory (ESO). It is 385 light-years from Earth. It is the first planet discovered by ESO's SPHERE instrument.

    <span class="mw-page-title-main">WASP-76b</span> Hot Jupiter orbiting WASP-76

    WASP-76b is an exoplanet classified as a Hot Jupiter. It is located in the constellation Pisces and orbits its host star, WASP-76, at a distance of approximately 0.033 astronomical units (AU). The orbital period of WASP-76b is approximately 1.8 days. Its mass is about 0.92 times that of Jupiter. The discovery of WASP-76b took place on October 21, 2013, and it is currently the only known planet in the WASP-76 system as of 2022. The equilibrium temperature of WASP-76b is estimated to be around 2,190 K, However, the measured daytime temperature is higher, reaching approximately 2,500 ± 200 K.

    WASP-62, formally named Naledi, is a single star about 573 light-years away. It is an F class main-sequence star, orbited by a planet, WASP-62b. The age of WASP-62 is much younger than the Sun at 0.8±0.6 billion years, and it has a metal abundance similar to the Sun.

    WASP-80 is a K-type main-sequence star about 162 light-years away. The star's age is much younger than the Sun's at 1.352±0.222 billion years. WASP-80 is similar to the Sun in concentration of heavy elements, although this measurement is highly uncertain.

    WASP-96 is a G8-type star, located approximately 1140 light-years from Earth in the constellation of Phoenix.

    References

    1. 1 2 3 Hellier, Coel; Anderson, D. R.; Cameron, A. Collier; Delrez, L.; Gillon, M.; Jehin, E.; Lendl, M.; Maxted, P. F. L.; Pepe, F.; Pollacco, D.; Queloz, D.; Ségransan, D.; Smalley, B.; Smith, A. M. S.; Southworth, J.; Triaud, A. H. M. J.; Udry, S.; West, R. G. (2013), "Transiting hot Jupiters from WASP-South, Euler and TRAPPIST: WASP-95b to WASP-101b", Monthly Notices of the Royal Astronomical Society, 440 (3): 1982–1992, arXiv: 1310.5630 , Bibcode:2014MNRAS.440.1982H, doi:10.1093/mnras/stu410
    2. 1 2 Bonomo, A. S.; Desidera, S.; et al. (June 2017). "The GAPS Programme with HARPS-N at TNG. XIV. Investigating giant planet migration history via improved eccentricity and mass determination for 231 transiting planets". Astronomy & Astrophysics . 602: A107. arXiv: 1704.00373 . Bibcode:2017A&A...602A.107B. doi:10.1051/0004-6361/201629882. S2CID   118923163.
    3. 1 2 "NASA's Webb Reveals Steamy Atmosphere of Distant Planet in Detail". NASA. 11 July 2022. Retrieved 12 July 2022.
    4. Cesari, Thaddeus (2022-07-11). "NASA Shares List of Cosmic Targets for Webb Telescope's First Images". NASA. Archived from the original on 2022-07-12. Retrieved 2022-07-12.
    5. Jorgenson, Amber (2018-05-08). "WASP-96b: the cloudless exoplanet". Astronomy.com. Retrieved 2022-07-08.
    6. McGruder, Chima D.; López-Morales, Mercedes; Kirk, James; Espinoza, Néstor; Rackham, Benjamin V.; Alam, Munazza K.; Allen, Natalie; Nikolov, Nikolay; Weaver, Ian C.; Ortiz Ceballos, Kevin; Osip, David J.; Apai, Dániel; Jordán, Andrés; Fortney, Jonathan J. (2022), "ACCESS: Confirmation of a Clear Atmosphere for WASP-96b and a Comparison of Light Curve Detrending Techniques", The Astronomical Journal, 164 (4): 134, arXiv: 2207.03479 , Bibcode:2022AJ....164..134M, doi: 10.3847/1538-3881/ac7f2e , S2CID   250334756
    7. Samra, D.; Helling, Ch.; Chubb, K. L.; Min, M.; Carone, L.; Schneider, A. D. (2023), "Clouds form on the hot Saturn JWST ERO target WASP-96b", Astronomy & Astrophysics, 669: A142, arXiv: 2211.00633 , Bibcode:2023A&A...669A.142S, doi:10.1051/0004-6361/202244939, S2CID   253244425
    8. 1 2 3 4 Taylor, Jake; et al. (May 2023). "Awesome SOSS: Atmospheric Characterisation of WASP-96 b using the JWST Early Release Observations". MNRAS. 524: 817–834. arXiv: 2305.16887 . Bibcode:2023MNRAS.524..817T. doi:10.1093/mnras/stad1547.

    Commons-logo.svg Media related to WASP-96 b at Wikimedia Commons