WR 30a

Last updated
WR 30a
DSS Image of Eta Carinae Nebula.jpg
Red circle.svg
Location of WR 30a (circled in red)
Observation data
Epoch J2000.0        Equinox J2000.0
Constellation Carina
Right ascension 10h 51m 38.906s [1]
Declination −60° 56 34.91 [1]
Apparent magnitude  (V)12.73 [2]
Characteristics
Evolutionary stage Wolf–Rayet star
Spectral type WO4 + O5((f)) [3]
U−B color index −0.22 [4]
B−V color index +1.04 [4]
Variable type WR [2]
Astrometry
Proper motion (μ)RA: −5.642 [1]   mas/yr
Dec.: 2.842 [1]   mas/yr
Parallax (π)0.1201 ± 0.0099  mas [1]
Distance 6,720+1,400
−1,090
[5]   pc
Absolute magnitude  (MV)−5.39 [6] (−2.80 + −5.38)
Orbit
PrimaryWR
CompanionO
Period (P)4.619 days [7]
Semi-major axis (a)35.4 R [8]
Eccentricity (e)0.2 [8]
Inclination (i)20 ± 5 [8] °
Semi-amplitude (K1)
(primary)
189 [4] km/s
Semi-amplitude (K2)
(secondary)
25 [8] km/s
Details
WR
Mass 7.5-9.7 [8]   M
Radius 0.88 [lower-alpha 1]   R
Luminosity 195,000 [9]   L
Temperature 129,500 [9]   K
O
Mass 40-60 [8]   M
Other designations
WR  29a, V574  Carinae, GSC  08958-04143, MS4
Database references
SIMBAD data

WR 30a is a massive spectroscopic binary in the Milky Way galaxy, in the constellation Carina. The primary is an extremely rare star on the WO oxygen sequence and the secondary a massive class O star. It appears near the Carina Nebula but is much further away.

Contents

Discovery

WR 30a was discovered in a photographic survey in the constellation Carina using the Curtis-Schmidt Telescope at the Cerro Tololo Inter-American Observatory. It was listed as MS4 out of nine new discoveries, classified only as "WR::". [10]

WR 30a was entered into the sixth catalogue of galactic Wolf–Rayet stars at the last minute with the designation WR 29a and a spectral class of "WR + ABS". [4] [11] A review of Wolf-Rayet stars in 1984 reported that WR 30a had a right ascension greater than WR 30 and should correctly be numbered 30a rather than 29a. [12] The name was corrected in the seventh edition of the catalogue. [6]

Still in 1984, WR 30a was studied spectroscopically and assigned a WC4 class. [13] Another 1984 study noted dilution of some emission lines, and suggested the presence of a binary companion of approximate spectral type O4. [14] The WO spectral classification had already been defined, but neither paper considered WR 30a to show sufficiently high excitation lines or strong oxygen lines to merit that classification. A WO spectral class was eventually assigned, with relatively weak Ovi emission but confirmed by the lack of Ciii emission. A WO5 class was temporarily assigned to account for the unusually low excitation, [15] but it was confirmed at WO4 when quantitative criteria for the WO sub-classes were defined. [16]

The identification of the companion remained only as an approximate O4 until 2001, when detailed spectroscopy assigned an O5((f)) class. This is based on the existence of narrow Niii emission lines at 463.4 - 464.1 nm, and the identification of strong Heii absorption at 468.6 nm. The luminosity class could not be determined with certainty, but a supergiant can be ruled out and the line widths suggest a giant class is most likely. [4]

System

WR 30a is a close spectroscopic binary containing a WO4 star and a non-supergiant O5 star. They orbit each other every 4.916 days. [7] Although spectral lines from both stars can be detected and orbital radial velocity variations measured, the orbit is still poorly known. The primary has highly broadened emission lines which are difficult to measure accurately, and the secondary has a relatively low orbital speed due to its high mass. Measurements of different spectral lines and different portions of line profiles lead to different results. Some components of the spectrum are produced by stellar winds not moving at orbital velocity with the stars. [4]

The stars do not eclipse each other, but they are deformed by the gravity and show small brightness variations during the orbit. These brightness variations are regular and consistent over long periods, so the orbital period is known accurately. The inclination can be estimated from the mass function and the colliding winds. The eccentricity is small and the most accurate model of spectral line profile variations during the orbit gives an eccentricity of 0.2. The semi-major axis of the orbit is 35.4 R, with the WO star moving in an ellipse of semi-major axis 30 R and the more massive O companion in an ellipse of semi-major axis 5.4 R. The separation of the stars varies from 28 R to 42 R. [8]

Although the hot secondary star produces what would typically be considered a fast stellar wind, it is entirely overpowered by the wind from the primary star. The shock front where the winds collide is approximately a cone around the O star with a half angle of 50°. The apex of the shock cone is estimated to lie at 25 R from the WO stars and 10 R from the O star. 10 R is comparable to the radius of a typical non-supergiant O5 star so that its own wind is forced back against the surface of the star. [8]

Variability

A visual band light curve for WR 30a (V574 Carinae), adapted from Gosset et al. (2001) V574CarLightCurve.png
A visual band light curve for WR 30a (V574 Carinae), adapted from Gosset et al. (2001)

WR 30a shows regular and continuous brightness variations of 0.02 magnitudes with a stable period of 4.6 days. These are ascribed to the orbital motion and to the deformed shapes of the two stars. In addition, the system shows occasional very rapid brightness of up to 0.2 magnitudes. These brightness changes have only been seen at visual wavelengths and last for only a few hours. At blue wavelengths the variations are either not seen, or sometimes a small opposite brightness change. They are not predictable but there is a possible period around three days. The cause of these brightness changes is completely unknown. [17]

Features

The primary star, of spectral classification WO4, is one of the very few known oxygen-sequence Wolf-Rayet stars, just four in the Milky Way galaxy and five in external galaxies. Modelling the atmosphere gives a luminosity around 195,000  L. It is a very small dense star, with a radius less than the sun's but with a mass nearly 10 solar masses. Very strong stellar winds, with a terminal velocity of 4,500 kilometers per second are causing WR 30a A to lose over 10−5 M/year. [4] For comparison, the Sun loses (2-3) x 10−14 solar masses per year due to its solar wind, several hundred million times less than WR 30a.

The secondary star has an O5 spectral class. It is not a supergiant, but could be a main sequence or giant star. Some helium lines and nitrogen emission is detected in the spectrum, indicating the mixing of fusion products to the surface and a strong stellar wind. [8]

The secondary star is visually over 10 times brighter than the primary and over five times more massive, although the primary dominates the appearance of the spectrum. Researchers are careful to avoid ambiguity about the star defined as the primary and typically refer to the components as "WR" and "O". [4] [9]

WR 30a is a very strong x-ray source. This is expected for a colliding-wind binary, but the source of the x-rays has not been conclusively determined. They may have a thermal or non-thermal origin. [7]

Evolutionary status

WO Wolf-Rayet stars are the last evolutionary stage of the most massive stars before exploding as supernovae, possibly with a gamma-ray burst. [18] It is very likely that WR 30a is on its last stages of nuclear fusion, near or beyond the end of helium burning. [19] Single-star evolutionary models of the WO component of WR 30a suggest it started life as a rapidly rotating 120 M star which has now lost over 90% of its mass. [17]

Notes

  1. Applying the Stefan–Boltzmann law with a nominal solar effective temperature of 5,772  K:

See also

Related Research Articles

<span class="mw-page-title-main">Wolf–Rayet star</span> Heterogeneous class of stars with unusual spectra

Wolf–Rayet stars, often abbreviated as WR stars, are a rare heterogeneous set of stars with unusual spectra showing prominent broad emission lines of ionised helium and highly ionised nitrogen or carbon. The spectra indicate very high surface enhancement of heavy elements, depletion of hydrogen, and strong stellar winds. The surface temperatures of known Wolf–Rayet stars range from 20,000 K to around 210,000 K, hotter than almost all other kinds of stars. They were previously called W-type stars referring to their spectral classification.

<span class="mw-page-title-main">WR 136</span> Star in the constellation of Cygnus

WR 136 is a Wolf–Rayet star located in the constellation Cygnus. It is in the center of the Crescent Nebula. Its age is estimated to be around 4.7 million years and it is nearing the end of its life. Within a few hundred thousand years, it is expected to explode as a supernova.

<span class="mw-page-title-main">HD 5980</span> Triple star system in the constellation Tucana

HD 5980 is a multiple star system on the outskirts of NGC 346 in the Small Magellanic Cloud (SMC) and is one of the brightest stars in the SMC.

<span class="mw-page-title-main">AB7</span> Binary star in the Small Magellanic Cloud in the constellation Tucana

AB7, also known as SMC WR7, is a binary star in the Small Magellanic Cloud. A Wolf–Rayet star and a supergiant companion of spectral type O orbit in a period of 19.56 days. The system is surrounded by a ring-shaped nebula known as a bubble nebula.

<span class="mw-page-title-main">WR 22</span> Binary star in the constellation Carina

WR 22, also known as V429 Carinae or HR 4188, is an eclipsing binary star system in the constellation Carina. The system contains a Wolf-Rayet (WR) star that is one of the most massive and most luminous stars known, and is also a bright X-ray source due to colliding winds with a less massive O class companion. Its eclipsing nature and apparent magnitude make it very useful for constraining the properties of luminous hydrogen-rich WR stars.

<span class="mw-page-title-main">WR 46</span> Star in the constellation Crux

WR 46 is a Wolf-Rayet star in the constellation of the Southern Cross of apparent magnitude +10.8. It is located at 55 arcmin north of Theta2 Crucis. The star is a member of the distant stellar association Cru OB4, and is around 2,900 parsecs or 9,300 light years from the Solar System.

WR 147 is a multiple star system in the constellation of Cygnus. The system is extremely reddened by interstellar extinction – that is, dust in front of the star scatters much of the blue light coming from WR 147, leaving the star appearing reddish.

<span class="mw-page-title-main">WR 148</span> Binary star in the constellation of Cygnus

WR 148 is a spectroscopic binary in the constellation Cygnus. The primary star is a Wolf–Rayet star and one of the most luminous stars known. The secondary has been suspected of being a stellar-mass black hole but may be a class O main sequence star.

<span class="mw-page-title-main">Theta Muscae</span> Star in the constellation Musca

Theta Muscae is a multiple star system in the southern constellation Musca, containing a Wolf-Rayet star and two massive companions. With an apparent magnitude of 5.5, it is the second-brightest Wolf–Rayet star in the sky, although much of the visual brightness comes from the massive companions and it is not one of the closest of its type.

WR 142 is a Wolf-Rayet star in the constellation Cygnus, an extremely rare star on the WO oxygen sequence. It is a luminous and very hot star, highly evolved and close to exploding as a supernova. It is suspected to be a binary star with a companion orbiting about 1 AU away.

<span class="mw-page-title-main">Melnick 34</span> Binary star in the Large Magellanic cloud

Melnick 34, also called BAT99-116, is a binary Wolf–Rayet star near R136 in the 30 Doradus complex in the Large Magellanic Cloud. Both components are amongst the most massive and most luminous stars known, and the system is the most massive known binary system.

HD 93403 is a spectroscopic binary containing two highly luminous hot blue stars. It is 10,000 light years away in the Carina Nebula in the constellation Carina. It appears to have spectral type O5.5III, but this is composed of two spectra from a blue supergiant and blue main sequence star of spectral type O5.5I and O7V respectively. The two stars orbit every 15 days with a separation that varies from 93 R to 149 R. The binary is shedding mass at the high rate of 0.0005 M per year.

<span class="mw-page-title-main">WR 102</span> Star in the constellation Sagittarius

WR 102 is a Wolf–Rayet star in the constellation Sagittarius, an extremely rare star on the WO oxygen sequence. It is a luminous and very hot star, highly evolved and close to exploding as a supernova.

<span class="mw-page-title-main">CD Crucis</span> Eclipsing binary star system in the constellation Crux

CD Crucis, also known as HD 311884, is an eclipsing binary star system in the constellation Crux. It is around 14,000 light years away near the faint open cluster Hogg 15. The binary contains a Wolf–Rayet star and is also known as WR 47.

<span class="mw-page-title-main">AB8 (star)</span> Binary star located in the Small Magellanic Cloud in the constellation Hydrus

AB8, also known as SMC WR8, is a binary star in the Small Magellanic Cloud (SMC). A Wolf-Rayet star and a main sequence companion of spectral type O orbit in a period of 16.638 days. It is one of only nine known WO stars, the only Wolf-Rayet star in the SMC not on the nitrogen sequence, and the only Wolf-Rayet star in the SMC outside the main bar.

<span class="mw-page-title-main">WR 93b</span> Wolf-Rayet star in the constellation of Cygnus

WR 93b is a Wolf-Rayet star in the constellation Scorpius, an extremely rare star on the WO oxygen sequence. It appears near NGC 6357 in the tail of the scorpion.

<span class="mw-page-title-main">WR 137</span> Star in the constellation of Cygnus

WR 137 is a variable Wolf-Rayet star located around 6,000 light years away from Earth in the constellation of Cygnus.

<span class="mw-page-title-main">R145</span> Binary star in the constellation Dorado

R145 is a spectroscopic binary star in the Tarantula Nebula in the Large Magellanic Cloud located in the constellation Dorado. Both components are amongst the most luminous known.

<span class="mw-page-title-main">WR 9</span> Spectroscopic binary star system in the constellation Puppis

WR 9 is a spectroscopic binary in the constellation Puppis consisting of a Wolf-Rayet star and a class O star. It is around 12,000 light years away.

<span class="mw-page-title-main">CV Serpentis</span>

CV Serpentis is a binary star system in the equatorial constellation of Serpens. It is a detached eclipsing binary with an orbital period of 29.7 days. The system includes a Wolf–Rayet (WR) star with the identifier WR 113. The system is located at a distance of approximately 6,700 light years from the Sun based on parallax measurements. It is a member of the Serpens OB2 association of co-moving stars.

References

  1. 1 2 3 4 5 Brown, A. G. A.; et al. (Gaia collaboration) (2021). "Gaia Early Data Release 3: Summary of the contents and survey properties". Astronomy & Astrophysics . 649: A1. arXiv: 2012.01533 . Bibcode:2021A&A...649A...1G. doi: 10.1051/0004-6361/202039657 . S2CID   227254300. (Erratum:  doi:10.1051/0004-6361/202039657e). Gaia EDR3 record for this source at VizieR.
  2. 1 2 Samus, N. N.; Durlevich, O. V.; et al. (2009). "VizieR Online Data Catalog: General Catalogue of Variable Stars (Samus+ 2007-2013)". VizieR On-line Data Catalog: B/GCVS. Originally Published in: 2009yCat....102025S. 1. Bibcode:2009yCat....102025S.
  3. Tramper, F.; Straal, S. M.; Sanyal, D.; Sana, H.; de Koter, A.; Gräfener, G.; Langer, N.; Vink, J. S.; de Mink, S. E.; Kaper, L. (2015). "Massive stars on the verge of exploding: The properties of oxygen sequence Wolf-Rayet stars". Astronomy & Astrophysics. 581 (110): A110. arXiv: 1507.00839v1 . Bibcode:2015A&A...581A.110T. doi:10.1051/0004-6361/201425390. S2CID   56093231.
  4. 1 2 3 4 5 6 7 8 9 Gosset, E.; Royer, P.; Rauw, G.; Manfroid, J.; Vreux, J.-M. (2001). "A first detailed study of the colliding wind WR+O binary WR 30a". Monthly Notices of the Royal Astronomical Society. 327 (2): 435. Bibcode:2001MNRAS.327..435G. doi: 10.1046/j.1365-8711.2001.04755.x .
  5. Crowther, Paul A.; Rate, Gemma (2020). "Unlocking Galactic Wolf–Rayet stars with Gaia DR2 – I. Distances and absolute magnitudes". Monthly Notices of the Royal Astronomical Society. 493 (1): 1512–1529. arXiv: 1912.10125 . Bibcode:2020MNRAS.493.1512R. doi:10.1093/mnras/stz3614.
  6. 1 2 van der Hucht, Karel A. (2001). "The VIIth catalogue of galactic Wolf–Rayet stars". New Astronomy Reviews. 45 (3): 135–232. Bibcode:2001NewAR..45..135V. doi:10.1016/S1387-6473(00)00112-3. ISSN   1387-6473.
  7. 1 2 3 Zhekov, Svetozar A.; Skinner, Stephen L. (2015). "X-rays from the oxygen-type Wolf-Rayet binary WR 30a". Monthly Notices of the Royal Astronomical Society. 452 (1): 872. arXiv: 1506.04634 . Bibcode:2015MNRAS.452..872Z. doi:10.1093/mnras/stv1343. S2CID   118692988.
  8. 1 2 3 4 5 6 7 8 9 Falceta-Gonçalves, D.; Abraham, Z.; Jatenco-Pereira, V. (2008). "Modelling the line variations from the wind-wind shock emissions of WR30a". Monthly Notices of the Royal Astronomical Society. 383 (1): 258. arXiv: 0710.0662 . Bibcode:2008MNRAS.383..258F. doi:10.1111/j.1365-2966.2007.12526.x. S2CID   8010490.
  9. 1 2 3 Nugis, T.; Lamers, H. J. G. L. M. (2000). "Mass-loss rates of Wolf-Rayet stars as a function of stellar parameters". Astronomy and Astrophysics. 360: 227. Bibcode:2000A&A...360..227N.
  10. MacConnell, Darrell J.; Sanduleak, N. (1970). "Faint New Wolf-Rayet Stars in Carina". Publications of the Astronomical Society of the Pacific. 82 (484): 80. Bibcode:1970PASP...82...80M. doi: 10.1086/128887 .
  11. Van Der Hucht, K. A.; Conti, P. S.; Lundstrom, I.; Stenholm, B. (1981). "The Sixth Catalogue of galactic Wolf-Rayet stars, their past and present". Space Science Reviews. 28 (3): 227. Bibcode:1981SSRv...28..227V. doi:10.1007/BF00173260. S2CID   121477300.
  12. Lundstrom, I.; Stenholm, B. (1984). "Wolf-Rayet stars in open clusters and associations". Astronomy and Astrophysics Supplement Series. 58: 163. Bibcode:1984A&AS...58..163L.
  13. Lundstrom, I.; Stenholm, B. (1984). "Spectroscopy of five Wolf-Rayet star candidates including a Wolf-Rayet star in the galactic bulge". Astronomy and Astrophysics. 138: 311. Bibcode:1984A&A...138..311L.
  14. Moffat, A. F. J.; Seggewiss, W. (1984). "The Wolf-Rayet spectrum of MS 4 = WR 29a". Astronomy and Astrophysics Supplement Series. 58: 117. Bibcode:1984A&AS...58..117M.
  15. Kingsburgh, R. L.; Barlow, M. J.; Storey, P. J. (1995). "Properties of the WO Wolf-Rayet stars". Astronomy and Astrophysics. 295: 75. Bibcode:1995A&A...295...75K.
  16. Crowther, P. A.; De Marco, Orsola; Barlow, M. J. (1998). "Quantitative classification of WC and WO stars". Monthly Notices of the Royal Astronomical Society. 296 (2): 367. Bibcode:1998MNRAS.296..367C. doi: 10.1046/j.1365-8711.1998.01360.x .
  17. 1 2 Paardekooper, S. J.; Van Der Hucht, K. A.; Van Genderen, A. M.; Brogt, E.; Gieles, M.; Meijerink, R. (2003). "New type of brightness variations of the colliding wind WO4 + O5((f)) binary WR 30a" (PDF). Astronomy and Astrophysics. 404 (2): L29. Bibcode:2003A&A...404L..29P. doi: 10.1051/0004-6361:20030574 .
  18. Groh, Jose H.; Meynet, Georges; Georgy, Cyril; Ekstrom, Sylvia (2013). "Fundamental properties of core-collapse Supernova and GRB progenitors: Predicting the look of massive stars before death". Astronomy & Astrophysics. 558: A131. arXiv: 1308.4681v1 . Bibcode:2013A&A...558A.131G. doi:10.1051/0004-6361/201321906. S2CID   84177572.
  19. Groh, Jose (2014). "The evolution of massive stars and their spectra I. A non-rotating 60 Msun star from the zero-age main sequence to the pre-supernova stage". Astronomy & Astrophysics. 564: A30. arXiv: 1401.7322 . Bibcode:2014A&A...564A..30G. doi:10.1051/0004-6361/201322573. S2CID   118870118.