Water on terrestrial planets of the Solar System

Last updated

The presence of water on the terrestrial planets of the Solar System (Mercury, Venus, Earth, Mars, and the closely related Earth's Moon) varies with each planetary body, with the exact origins remaining unclear. Additionally, the terrestrial dwarf planet Ceres is known to have water ice on its surface.

Contents

Water inventories

Mercury

Due to its proximity to the Sun and lack of visible water on its surface, the planet Mercury had been thought of as a non-volatile planet. Data retrieved from the Mariner 10 mission found evidence of hydrogen (H), helium (He), and oxygen (O) in Mercury's exosphere. [1] Volatiles have also been found near the polar regions. [2] MESSENGER, however, sent back data from multiple on-board instruments that led scientists to the conclusion that Mercury was volatile rich. [3] [4] [5] Mercury is rich in potassium (K) which has been suggested as a proxy for volatile depletion on the planetary body. This leads to assumption that Mercury could have accreted water on its surface, relative to that of Earth if its proximity had not been so near that of the Sun. [6]

Venus

The current Venusian atmosphere has only ~200 mg/kg H2O(g) in its atmosphere and the pressure and temperature regime makes water unstable on its surface. Nevertheless, assuming that early Venus's H2O had a ratio between deuterium (heavy hydrogen, 2H) and hydrogen (1H) similar to Earth's Vienna Standard Mean Ocean Water (VSMOW) of 1.6×10−4, [7] the current D/H ratio in the Venusian atmosphere of 1.9×10−2, at nearly ×120 of Earth's, may indicate that Venus had a much larger H2O inventory. [8] While the large disparity between terrestrial and Venusian D/H ratios makes any estimation of Venus's geologically ancient water budget difficult, [9] its mass may have been at least 0.3% of Earth's hydrosphere. [8] Estimates based on Venus's levels of deuterium suggest that the planet has lost anywhere from 4 metres (13 ft) of surface water up to "an Earth's ocean's worth". [10]

Earth

Earth's hydrosphere contains ~1.46×1021 kg (3.22×1021 lb) of H2O and sedimentary rocks contain ~0.21×1021 kg (4.6×1020 lb), for a total crustal inventory of ~1.67×1021 kg (3.68×1021 lb) of H2O. The mantle inventory is poorly constrained in the range of 0.5×1021–4×1021 kg (1.1×1021–8.8×1021 lb). Therefore, the bulk inventory of H2O on Earth can be conservatively estimated as 0.04% of Earth's mass (~2.3×1021 kg (5.1×1021 lb)).

Earth's Moon

Recent observation made by a number of spacecraft confirmed significant amounts of lunar water. The secondary ion mass spectrometer (SIMS) measured H2O as well as other possible volatiles in lunar volcanic glass bubbles. In these volcanic glasses, 4-46 ppm by weight (wt) of H2O was found and then modeled to have been 260-745 ppm wt prior to the lunar volcanic eruptions. [11] SIMS also found lunar water in the rock samples the Apollo astronauts returned to Earth. These rock samples were tested in three different ways and all came to the same conclusion that the Moon contains water. [12] [13] [14] [15]

There are three main data sets for water abundance on the lunar surface: highland samples, KREEP samples, and pyroclastic glass samples. Highlands samples were estimated for the lunar magma ocean at 1320-5000 ppm wt of H2O in the beginning. [16] The urKREEP sample estimates a 130-240 ppm wt of H2O, which is similar to the findings in the current Highland samples (before modeling). [17] Pyroclastic glass sample beads were used to estimate the water content in the mantle source and the bulk silicate Moon. The mantle source was estimated at 110 ppm wt of H2O and the bulk silicate Moon contained 100-300 ppm wt of H2O. [18] [17]

Mars

A significant amount of surface hydrogen has been observed globally by the Mars Odyssey GRS. [19] Stoichiometrically estimated water mass fractions indicate that—when free of carbon dioxide—the near surface at the poles consists almost entirely of water covered by a thin veneer of fine material. [19] This is reinforced by MARSIS observations, with an estimated 1.6×106 km3 (3.8×105 cu mi) of water at the southern polar region with Water Equivalent to a Global layer (WEG) 11 metres (36 ft) deep. [20] Additional observations at both poles suggest the total WEG to be 30 m (98 ft), while the Mars Odyssey NS observations places the lower bound at ~14 cm (5.5 in) depth. [21] Geomorphic evidence favors significantly larger quantities of surface water over geologic history, with WEG as deep as 500 m (1,600 ft). [21] The current atmospheric reservoir of water, though important as a conduit, is insignificant in volume with the WEG no more than 10 μm (0.00039 in). [21] Since the typical surface pressure of the current atmosphere (~6 hPa (0.087 psi) [22] ) is less than the triple point of H2O, liquid water is unstable on the surface unless present in sufficiently large volumes. Furthermore, the average global temperature is ~220 K (−53 °C; −64 °F), even below the eutectic freezing point of most brines. [22] For comparison, the highest diurnal surface temperatures at the two MER sites have been ~290 K (17 °C; 62 °F). [23]

Accretion of water by Earth and Mars

The D/H isotopic ratio is a primary constraint on the source of H2O of terrestrial planets. Comparison of the planetary D/H ratios with those of carbonaceous chondrites and comets enables a tentative determination of the source of H2O. The best constraints for accreted H2O are determined from non-atmospheric H2O, as the D/H ratio of the atmospheric component may be subject to rapid alteration by the preferential loss of H [22] unless it is in isotopic equilibrium with surface H2O. Earth's VSMOW D/H ratio of 1.6×10−4 [7] and modeling of impacts suggest that the cometary contribution to crustal water was less than 10%. However, much of the water could be derived from Mercury-sized planetary embryos that formed in the asteroid belt beyond 2.5 AU. [24] Mars's original D/H ratio as estimated by deconvolving the atmospheric and magmatic D/H components in Martian meteorites (e.g., QUE 94201), is ×(1.9+/-0.25) the VSMOW value. [24] The higher D/H and impact modeling (significantly different from Earth due to Mars's smaller mass) favor a model where Mars accreted a total of 6% to 27% the mass of the current Earth hydrosphere, corresponding respectively to an original D/H between ×1.6 and ×1.2 the SMOW value. [24] The former enhancement is consistent with roughly equal asteroidal and cometary contributions, while the latter would indicate mostly asteroidal contributions. [24] The corresponding WEG would be 0.6–2.7 km (0.37–1.68 mi), consistent with a 50% outgassing efficiency to yield ~500 m (1,600 ft) WEG of surface water. [24] Comparing the current atmospheric D/H ratio of ×5.5 SMOW ratio with the primordial ×1.6 SMOW ratio suggests that ~50 m (160 ft) of has been lost to space via solar wind stripping. [24]

The cometary and asteroidal delivery of water to accreting Earth and Mars has significant caveats, even though it is favored by D/H isotopic ratios. [9] Key issues include: [9]

  1. The higher D/H ratios in Martian meteorites could be a consequence of biased sampling since Mars may have never had an effective crustal recycling process
  2. Earth's Primitive upper mantle estimate of the 187Os/188Os isotopic ratio exceeds 0.129, significantly greater than that of carbonaceous chondrites, but similar to anhydrous ordinary chondrites. This makes it unlikely that planetary embryos compositionally similar to carbonaceous chondrites supplied water to Earth
  3. Earth's atmospheric content of Ne is significantly higher than would be expected had all the rare gases and H2O been accreted from planetary embryos with carbonaceous chondritic compositions. [25]

An alternative to the cometary and asteroidal delivery of H2O would be the accretion via physisorption during the formation of the terrestrial planets in the solar nebula. This would be consistent with the thermodynamic estimate of around two Earth masses of water vapor within 3AU of the solar accretionary disk, which would exceed by a factor of 40 the mass of water needed to accrete the equivalent of 50 Earth hydrospheres (the most extreme estimate of Earth's bulk H2O content) per terrestrial planet. [9] Even though much of the nebular H2O(g) may be lost due to the high temperature environment of the accretionary disk, it is possible for physisorption of H2O on accreting grains to retain nearly three Earth hydrospheres of H2O at 500 K (227 °C; 440 °F) temperatures. [9] This adsorption model would effectively avoid the 187Os/188Os isotopic ratio disparity issue of distally-sourced H2O. However, the current best estimate of the nebular D/H ratio spectroscopically estimated with Jovian and Saturnian atmospheric CH4 is only 2.1×10−5, a factor of 8 lower than Earth's VSMOW ratio. [9] It is unclear how such a difference could exist, if physisorption were indeed the dominant form of H2O accretion for Earth in particular and the terrestrial planets in general.

See also

Related Research Articles

<span class="mw-page-title-main">Terraforming</span> Hypothetical planetary engineering process

Terraforming or terraformation ("Earth-shaping") is the hypothetical process of deliberately modifying the atmosphere, temperature, surface topography or ecology of a planet, moon, or other body to be similar to the environment of Earth to make it habitable for humans to live on.

<span class="mw-page-title-main">Terrestrial planet</span> Planet that is composed primarily of silicate rocks or metals

A terrestrial planet, telluric planet, or rocky planet, is a planet that is composed primarily of silicate rocks or metals. Within the Solar System, the terrestrial planets accepted by the IAU are the inner planets closest to the Sun: Mercury, Venus, Earth and Mars. Among astronomers who use the geophysical definition of a planet, two or three planetary-mass satellites – Earth's Moon, Io, and sometimes Europa – may also be considered terrestrial planets; and so may be the rocky protoplanet-asteroids Pallas and Vesta. The terms "terrestrial planet" and "telluric planet" are derived from Latin words for Earth, as these planets are, in terms of structure, Earth-like. Terrestrial planets are generally studied by geologists, astronomers, and geophysicists.

<span class="mw-page-title-main">Giant-impact hypothesis</span> Theory of the formation of the Moon

The giant-impact hypothesis, sometimes called the Big Splash, or the Theia Impact, suggests that the Moon was formed from the ejecta of a collision between the early Earth and a Mars-sized planet, approximately 4.5 billion years ago in the Hadean eon. The colliding body is sometimes called Theia, named after the mythical Greek Titan who was the mother of Selene, the goddess of the Moon. Analysis of lunar rocks published in a 2016 report suggests that the impact might have been a direct hit, causing a fragmentation and thorough mixing of both parent bodies.

<span class="mw-page-title-main">Crust (geology)</span> Outermost solid shell of astronomical bodies

In geology, the crust is the outermost solid shell of a rocky planet, dwarf planet, or natural satellite. It is usually distinguished from the underlying mantle by its chemical makeup; however, in the case of icy satellites, it may be distinguished based on its phase.

<span class="mw-page-title-main">Planetary core</span> Innermost layer(s) of a planet

A planetary core consists of the innermost layers of a planet. Cores may be entirely solid or entirely liquid, or a mixture of solid and liquid layers as is the case in the Earth. In the Solar System, core sizes range from about 20% to 85% of a planet's radius (Mercury).

<span class="mw-page-title-main">Habitable zone</span> Orbits where planets may have liquid surface water

In astronomy and astrobiology, the habitable zone (HZ), or more precisely the circumstellar habitable zone (CHZ), is the range of orbits around a star within which a planetary surface can support liquid water given sufficient atmospheric pressure. The bounds of the HZ are based on Earth's position in the Solar System and the amount of radiant energy it receives from the Sun. Due to the importance of liquid water to Earth's biosphere, the nature of the HZ and the objects within it may be instrumental in determining the scope and distribution of planets capable of supporting Earth-like extraterrestrial life and intelligence.

<span class="mw-page-title-main">Origin of water on Earth</span> Hypotheses for the possible sources of the water on Earth

The origin of water on Earth is the subject of a body of research in the fields of planetary science, astronomy, and astrobiology. Earth is unique among the rocky planets in the Solar System in having oceans of liquid water on its surface. Liquid water, which is necessary for all known forms of life, continues to exist on the surface of Earth because the planet is at a far enough distance from the Sun that it does not lose its water, but not so far that low temperatures cause all water on the planet to freeze.

<span class="mw-page-title-main">Ejecta blanket</span> Symmetrical apron of ejecta that surrounds an impact crater

An ejecta blanket is a generally symmetrical apron of ejecta that surrounds an impact crater; it is layered thickly at the crater's rim and thin to discontinuous at the blanket's outer edge. The impact cratering is one of the basic surface formation mechanisms of the solar system bodies and the formation and emplacement of ejecta blankets are the fundamental characteristics associated with impact cratering event. The ejecta materials are considered as the transported materials beyond the transient cavity formed during impact cratering regardless of the state of the target materials.

Extraterrestrial liquid water is water in its liquid state that naturally occurs outside Earth. It is a subject of wide interest because it is recognized as one of the key prerequisites for life as we know it and thus surmised as essential for extraterrestrial life.

<span class="mw-page-title-main">Atmosphere of Titan</span> Only thick atmosphere of any moon in the Solar System

The atmosphere of Titan is the dense layer of gases surrounding Titan, the largest moon of Saturn. It is the only thick atmosphere of a natural satellite in the Solar System. Titan's lower atmosphere is primarily composed of nitrogen (94.2%), methane (5.65%), and hydrogen (0.099%). There are trace amounts of other hydrocarbons, such as ethane, diacetylene, methylacetylene, acetylene, propane, PAHs and of other gases, such as cyanoacetylene, hydrogen cyanide, carbon dioxide, carbon monoxide, cyanogen, acetonitrile, argon and helium. The isotopic study of nitrogen isotopes ratio also suggests acetonitrile may be present in quantities exceeding hydrogen cyanide and cyanoacetylene. The surface pressure is about 50% higher than on Earth at 1.5 bars which is near the triple point of methane and allows there to be gaseous methane in the atmosphere and liquid methane on the surface. The orange color as seen from space is produced by other more complex chemicals in small quantities, possibly tholins, tar-like organic precipitates.

A cold trap is a concept in planetary sciences that describes an area cold enough to freeze (trap) volatiles. Cold-traps can exist on the surfaces of airless bodies or in the upper layers of an adiabatic atmosphere. On airless bodies, the ices trapped inside cold-traps can potentially remain there for geologic time periods, allowing us a glimpse into the primordial solar system. In adiabatic atmospheres, cold-traps prevent volatiles from escaping the atmosphere into space.

<span class="mw-page-title-main">Martian soil</span> Fine regolith found on the surface of Mars

Martian soil is the fine regolith found on the surface of Mars. Its properties can differ significantly from those of terrestrial soil, including its toxicity due to the presence of perchlorates. The term Martian soil typically refers to the finer fraction of regolith. So far, no samples have been returned to Earth, the goal of a Mars sample-return mission, but the soil has been studied remotely with the use of Mars rovers and Mars orbiters.

<span class="mw-page-title-main">Water on Mars</span> Study of past and present water on Mars

Almost all water on Mars today exists as ice, though it also exists in small quantities as vapor in the atmosphere. What was thought to be low-volume liquid brines in shallow Martian soil, also called recurrent slope lineae, may be grains of flowing sand and dust slipping downhill to make dark streaks. While most water ice is buried, it is exposed at the surface across several locations on Mars. In the mid-latitudes, it is exposed by impact craters, steep scarps and gullies. Additionally, water ice is also visible at the surface at the north polar ice cap. Abundant water ice is also present beneath the permanent carbon dioxide ice cap at the Martian south pole. More than 5 million km3 of ice have been detected at or near the surface of Mars, enough to cover the whole planet to a depth of 35 meters (115 ft). Even more ice might be locked away in the deep subsurface.

<span class="mw-page-title-main">Late Heavy Bombardment</span> Hypothesized astronomical event

The Late Heavy Bombardment (LHB), or lunar cataclysm, is a hypothesized event thought to have occurred approximately 4.1 to 3.8 billion years (Ga) ago, at a time corresponding to the Neohadean and Eoarchean eras on Earth. According to the hypothesis, during this interval, a disproportionately large number of asteroids and comets collided with the early terrestrial planets in the inner Solar System, including Mercury, Venus, Earth, Mars and Theia. These came from both post-accretion and planetary instability-driven populations of impactors. Although it used to be widely accepted, it remained difficult to provide an overwhelming amount of evidence for the hypothesis. However, recent re-appraisal of the cosmo-chemical constraints indicates that there was likely no late spike in the bombardment rate.

<span class="mw-page-title-main">Planetary surface</span> Where the material of a planetary masss outer crust contacts its atmosphere or outer space

A planetary surface is where the solid or liquid material of certain types of astronomical objects contacts the atmosphere or outer space. Planetary surfaces are found on solid objects of planetary mass, including terrestrial planets, dwarf planets, natural satellites, planetesimals and many other small Solar System bodies (SSSBs). The study of planetary surfaces is a field of planetary geology known as surface geology, but also a focus on a number of fields including planetary cartography, topography, geomorphology, atmospheric sciences, and astronomy. Land is the term given to non-liquid planetary surfaces. The term landing is used to describe the collision of an object with a planetary surface and is usually at a velocity in which the object can remain intact and remain attached.

<span class="mw-page-title-main">Planetary science</span> Science of planets and planetary systems

Planetary science is the scientific study of planets, celestial bodies and planetary systems and the processes of their formation. It studies objects ranging in size from micrometeoroids to gas giants, aiming to determine their composition, dynamics, formation, interrelations and history. It is a strongly interdisciplinary field, which originally grew from astronomy and Earth science, and now incorporates many disciplines, including planetary geology, cosmochemistry, atmospheric science, physics, oceanography, hydrology, theoretical planetary science, glaciology, and exoplanetology. Allied disciplines include space physics, when concerned with the effects of the Sun on the bodies of the Solar System, and astrobiology.

Comparative planetary science or comparative planetology is a branch of space science and planetary science in which different natural processes and systems are studied by their effects and phenomena on and between multiple bodies. The planetary processes in question include geology, hydrology, atmospheric physics, and interactions such as impact cratering, space weathering, and magnetospheric physics in the solar wind, and possibly biology, via astrobiology.

<span class="mw-page-title-main">Magma ocean</span>

Magma oceans exist during periods of Earth's or any planet's or some natural satellite's accretion when the planet or the natural satellite is completely or partly molten.

The K/U Ratio is the ratio of a slightly volatile element, potassium (K), to a highly refractory element, uranium (U). It is a useful way to measure the presence of volatile elements on planetary surfaces. The K/U ratio helps explain the evolution of the planetary system and the origin of Earth's moon.

Xenon isotope geochemistry uses the abundance of xenon (Xe) isotopes and total xenon to investigate how Xe has been generated, transported, fractionated, and distributed in planetary systems. Xe has nine stable or very long-lived isotopes. Radiogenic 129Xe and fissiogenic 131,132,134,136Xe isotopes are of special interest in geochemical research. The radiogenic and fissiogenic properties can be used in deciphering the early chronology of Earth. Elemental Xe in the atmosphere is depleted and isotopically enriched in heavier isotopes relative to estimated solar abundances. The depletion and heavy isotopic enrichment can be explained by hydrodynamic escape to space that occurred in Earth's early atmosphere. Differences in the Xe isotope distribution between the deep mantle, shallower Mid-ocean Ridge Basalts (MORBs), and the atmosphere can be used to deduce Earth's history of formation and differentiation of the solid Earth into layers.

References

  1. Broadfoot, A. L.; Shemansky, D. E.; Kumar, S. (1976). "Mariner 10: Mercury atmosphere". Geophysical Research Letters. 3 (10): 577–580. Bibcode:1976GeoRL...3..577B. doi:10.1029/gl003i010p00577. ISSN   0094-8276.
  2. Slade, M. A.; Butler, B. J.; Muhleman, D. O. (1992-10-23). "Mercury Radar Imaging: Evidence for Polar Ice". Science. 258 (5082): 635–640. Bibcode:1992Sci...258..635S. doi:10.1126/science.258.5082.635. ISSN   0036-8075. PMID   17748898. S2CID   34009087.
  3. Evans, Larry G.; Peplowski, Patrick N.; Rhodes, Edgar A.; Lawrence, David J.; McCoy, Timothy J.; Nittler, Larry R.; Solomon, Sean C.; Sprague, Ann L.; Stockstill-Cahill, Karen R.; Starr, Richard D.; Weider, Shoshana Z. (2012-11-02). "Major-element abundances on the surface of Mercury: Results from the MESSENGER Gamma-Ray Spectrometer". Journal of Geophysical Research: Planets. 117 (E12): n/a. Bibcode:2012JGRE..117.0L07E. doi:10.1029/2012je004178. ISSN   0148-0227.
  4. Peplowski, Patrick N.; Lawrence, David J.; Evans, Larry G.; Klima, Rachel L.; Blewett, David T.; Goldsten, John O.; Murchie, Scott L.; McCoy, Timothy J.; Nittler, Larry R.; Solomon, Sean C.; Starr, Richard D. (2015). "Constraints on the abundance of carbon in near-surface materials on Mercury: Results from the MESSENGER Gamma-Ray Spectrometer". Planetary and Space Science. 108: 98–107. Bibcode:2015P&SS..108...98P. doi:10.1016/j.pss.2015.01.008. ISSN   0032-0633.
  5. Peplowski, Patrick N.; Klima, Rachel L.; Lawrence, David J.; Ernst, Carolyn M.; Denevi, Brett W.; Frank, Elizabeth A.; Goldsten, John O.; Murchie, Scott L.; Nittler, Larry R.; Solomon, Sean C. (2016-03-07). "Remote sensing evidence for an ancient carbon-bearing crust on Mercury". Nature Geoscience. 9 (4): 273–276. Bibcode:2016NatGe...9..273P. doi:10.1038/ngeo2669. ISSN   1752-0894.
  6. Greenwood, James P.; Karato, Shun-ichiro; Vander Kaaden, Kathleen E.; Pahlevan, Kaveh; Usui, Tomohiro (2018-07-26). "Water and Volatile Inventories of Mercury, Venus, the Moon, and Mars". Space Science Reviews. 214 (5): 92. Bibcode:2018SSRv..214...92G. doi:10.1007/s11214-018-0526-1. ISSN   0038-6308. S2CID   125706287.
  7. 1 2 National Institute of Standards and Technology (2005), Report of Investigation
  8. 1 2 Kulikov, Yu. N.; Lammer, H.; Lichtenegger, H. I. M.; Terada, N.; Ribas, I.; Kolb, C.; Langmayr, D.; Lundin, R.; Guinan, E. F.; Barabash, S.; Biernat, H. K. (2006). "Atmospheric and water loss from early Venus". Planetary and Space Science. 54 (13–14): 1425–1444. Bibcode:2006P&SS...54.1425K. CiteSeerX   10.1.1.538.9059 . doi:10.1016/j.pss.2006.04.021.
  9. 1 2 3 4 5 6 Drake, M. J. (2005). "Origin of water in the terrestrial planets". Meteoritics & Planetary Science. 40 (4): 519–527. Bibcode:2005M&PS...40..519D. doi: 10.1111/j.1945-5100.2005.tb00960.x .
  10. Owen, (2007), news.nationalgeographic.com/news/2007/11/071128-venus-earth_2.html
  11. Saal, Alberto E.; Hauri, Erik H.; Cascio, Mauro L.; Van Orman, James A.; Rutherford, Malcolm C.; Cooper, Reid F. (2008). "Volatile content of lunar volcanic glasses and the presence of water in the Moon's interior". Nature. 454 (7201): 192–195. Bibcode:2008Natur.454..192S. doi:10.1038/nature07047. ISSN   0028-0836. PMID   18615079. S2CID   4394004.
  12. Boyce, Jeremy W.; Liu, Yang; Rossman, George R.; Guan, Yunbin; Eiler, John M.; Stolper, Edward M.; Taylor, Lawrence A. (2010). "Lunar apatite with terrestrial volatile abundances" (PDF). Nature. 466 (7305): 466–469. Bibcode:2010Natur.466..466B. doi:10.1038/nature09274. ISSN   0028-0836. PMID   20651686. S2CID   4405054.
  13. Greenwood, James P.; Itoh, Shoichi; Sakamoto, Naoya; Warren, Paul; Taylor, Lawrence; Yurimoto, Hisayoshi (2011-01-09). "Hydrogen isotope ratios in lunar rocks indicate delivery of cometary water to the Moon". Nature Geoscience. 4 (2): 79–82. Bibcode:2011NatGe...4...79G. doi:10.1038/ngeo1050. hdl: 2115/46873 . ISSN   1752-0894.
  14. McCubbin, Francis M.; Vander Kaaden, Kathleen E.; Tartèse, Romain; Klima, Rachel L.; Liu, Yang; Mortimer, James; Barnes, Jessica J.; Shearer, Charles K.; Treiman, Allan H.; Lawrence, David J.; Elardo, Stephen M. (2015a). "Magmatic volatiles (H, C, N, F, S, Cl) in the lunar mantle, crust, and regolith: Abundances, distributions, processes, and reservoirs". American Mineralogist. 100 (8–9): 1668–1707. Bibcode:2015AmMin.100.1668M. doi: 10.2138/am-2015-4934ccbyncnd . ISSN   0003-004X.
  15. McCubbin, Francis M.; Vander Kaaden, Kathleen E.; Tartèse, Romain; Boyce, Jeremy W.; Mikhail, Sami; Whitson, Eric S.; Bell, Aaron S.; Anand, Mahesh; Franchi, Ian A.; Wang, Jianhua; Hauri, Erik H. (2015b). "Experimental investigation of F, Cl, and OH partitioning between apatite and Fe-rich basaltic melt at 1.0–1.2 GPa and 950–1000 °C". American Mineralogist. 100 (8–9): 1790–1802. Bibcode:2015AmMin.100.1790M. doi:10.2138/am-2015-5233. ISSN   0003-004X. S2CID   100688307.
  16. Hui, Hejiu; Guan, Yunbin; Chen, Yang; Peslier, Anne H.; Zhang, Youxue; Liu, Yang; Flemming, Roberta L.; Rossman, George R.; Eiler, John M.; Neal, Clive R.; Osinski, Gordon R. (2017-09-01). "A heterogeneous lunar interior for hydrogen isotopes as revealed by the lunar highlands samples". Earth and Planetary Science Letters. 473: 14–23. Bibcode:2017E&PSL.473...14H. doi:10.1016/j.epsl.2017.05.029. ISSN   0012-821X.
  17. 1 2 Hauri, Erik H.; Saal, Alberto E.; Rutherford, Malcolm J.; Van Orman, James A. (2015). "Water in the Moon's interior: Truth and consequences". Earth and Planetary Science Letters. 409: 252–264. Bibcode:2015E&PSL.409..252H. doi: 10.1016/j.epsl.2014.10.053 . ISSN   0012-821X.
  18. Chen, Yang; Zhang, Youxue; Liu, Yang; Guan, Yunbin; Eiler, John; Stolper, Edward M. (2015). "Water, fluorine, and sulfur concentrations in the lunar mantle" (PDF). Earth and Planetary Science Letters. 427: 37–46. Bibcode:2015E&PSL.427...37C. doi:10.1016/j.epsl.2015.06.046. ISSN   0012-821X.
  19. 1 2 Boynton, W. V.; et al. (2007). "Concentration of H, Si, Cl, K, Fe, and Th in the low- and mid-latitude regions of Mars". Journal of Geophysical Research. 112 (E12): E12S99. Bibcode:2007JGRE..11212S99B. doi: 10.1029/2007JE002887 .
  20. Plaut, J. J.; et al. (2007). "Subsurface Radar Sounding of the South Polar Layered Deposits of Mars". Science. 316 (5821): 92–95. Bibcode:2007Sci...316...92P. doi: 10.1126/science.1139672 . PMID   17363628. S2CID   23336149.
  21. 1 2 3 Feldman, W. C. (2004). "Global distribution of near-surface hydrogen on Mars". Journal of Geophysical Research. 109 (E9): E09006. Bibcode:2004JGRE..109.9006F. doi: 10.1029/2003JE002160 .
  22. 1 2 3 Jakosky, B. M.; Phillips, R. J. (2001). "Mars' volatile and climate history". Nature. 412 (6843): 237–244. Bibcode:2001Natur.412..237J. doi:10.1038/35084184. PMID   11449285.
  23. Spanovich, N.; Smith, M. D.; Smith, P. H.; Wolff, M. J.; Christensen, P. R.; Squyres, S. W. (2006). "Surface and near-surface atmospheric temperatures for the Mars Exploration Rover landing sites". Icarus. 180 (2): 314–320. Bibcode:2006Icar..180..314S. doi:10.1016/j.icarus.2005.09.014.
  24. 1 2 3 4 5 6 Lunine, Jonathan I.; Chambers, J.; Morbidelli, A.; Leshin, L. A. (2003). "The origin of water on Mars". Icarus. 165 (1): 1–8. Bibcode:2003Icar..165....1L. doi:10.1016/S0019-1035(03)00172-6.
  25. Morbidelli, A.; Chambers, J.; Lunine, Jonathan I.; Petit, J. M.; Robert, F.; Valsecchi, G. B.; Cyr, K. E. (2000). "Source regions and timescales for the delivery of water to the Earth". Meteoritics & Planetary Science. 35 (6): 1309–1320. Bibcode:2000M&PS...35.1309M. doi: 10.1111/j.1945-5100.2000.tb01518.x .