Aerial refueling

Last updated

A KC-135 Stratotanker refuels an F-16 Fighting Falcon using a flying boom KC-135 refuels an F-16 Fighting Falcon.jpg
A KC-135 Stratotanker refuels an F-16 Fighting Falcon using a flying boom

Aerial refueling, also referred to as air refueling, in-flight refueling (IFR), air-to-air refueling (AAR), and tanking, is the process of transferring aviation fuel from one aircraft (the tanker) to another (the receiver) while both aircraft are in flight. [lower-alpha 1] The two main refueling systems are probe-and-drogue , which is simpler to adapt to existing aircraft, and the flying boom , which offers faster fuel transfer, but requires a dedicated boom operator station.

Contents

The procedure allows the receiving aircraft to remain airborne longer, extending its range or loiter time. A series of air refuelings can give range limited only by crew fatigue/physical needs and engineering factors such as engine oil consumption. As the receiver aircraft can be topped up with extra fuel in the air, air refueling can allow a takeoff with a greater payload which could be weapons, cargo, or personnel: the maximum takeoff weight is maintained by carrying less fuel and topping up once airborne. Aerial refueling has also been considered as a means to reduce fuel consumption on long-distance flights greater than 3,000 nautical miles (5,600 km; 3,500 mi). Potential fuel savings in the range of 35–40% have been estimated for long-haul flights (including the fuel used during the tanker missions). [1]

Usually, the aircraft providing the fuel is specially designed for the task, although refueling pods may be fitted to existing aircraft designs in the case of "probe-and-drogue" systems. The cost of the refueling equipment on both tanker and receiver aircraft and the specialized aircraft handling of the aircraft to be refueled (very close "line astern" formation flying) has resulted in the activity only being used in military operations; there are no regular civilian in-flight refueling activities. Originally employed shortly before World War II on a limited scale to extend the range of British civilian transatlantic flying boats, and then after World War II on a large scale to extend the range of strategic bombers, aerial refueling since the Vietnam War has been extensively used in large-scale military operations.

Development history

Early experiments

Capt. Lowell Smith and Lt. John P. Richter receiving the first mid-air refueling on 27 June 1923 Refueling, 1923.jpg
Capt. Lowell Smith and Lt. John P. Richter receiving the first mid-air refueling on 27 June 1923

Some of the earliest experiments in aerial refueling took place in the 1920s; two slow-flying aircraft flew in formation, with a hose run down from a hand-held fuel tank on one aircraft and placed into the usual fuel filler of the other. The first mid-air refueling, based on the development of Alexander P. de Seversky, between two planes occurred on 25 June 1923, between two Airco DH-4B biplanes of the United States Army Air Service. An endurance record was set by three DH-4Bs (a receiver and two tankers) on 27–28 August 1923, in which the receiver airplane remained aloft for more than 37 hours using nine mid-air refuelings to transfer 687 US gallons (2,600 L) of aviation gasoline and 38 US gallons (140 L) of engine oil. The same crews demonstrated the utility of the technique on 25 October 1923, when a DH-4 flew from Sumas, Washington, on the Canada–United States border, to Tijuana, Mexico, landing in San Diego, using mid-air refuelings at Eugene, Oregon, and Sacramento, California.

Similar trial demonstrations of mid-air refueling technique took place at the Royal Aircraft Establishment in England and by the Armée de l'Air in France in the same year, but these early experiments were not yet regarded as a practical proposition, and were generally dismissed as stunts.

As the 1920s progressed, greater numbers of aviation enthusiasts vied to set new aerial long-distance records, using inflight air refueling. One such enthusiast, who would revolutionize aerial refueling was Sir Alan Cobham, member of the Royal Flying Corps in World War I, and a pioneer of long-distance aviation. During the 1920s, he made long-distance flights to places as far afield as Africa and Australia and he began experimenting with the possibilities of in-flight refueling to extend the range of flight. [2]

Cobham was one of the founding directors of Airspeed Limited, an aircraft manufacturing company that went on to produce a specially adapted Airspeed Courier that Cobham used for his early experiments with in-flight refueling. This craft was eventually modified by Airspeed to Cobham's specification, for a non-stop flight from London to India, using in-flight refueling to extend the plane's flight duration.

Meanwhile, in 1929, a group of US Army Air Corps fliers, led by then Major Carl Spaatz, set an endurance record of over 150 hours with a Fokker C-2A named the Question Mark over Los Angeles. Between 11 June and 4 July 1930, the brothers John, Kenneth, Albert, and Walter Hunter set a new record of 553 hours 40 minutes over Chicago using two Stinson SM-1 Detroiters as refueler and receiver. Aerial refueling remained a very dangerous process until 1935, when brothers Fred and Al Key demonstrated a spill-free refueling nozzle, designed by A. D. Hunter. [3] They exceeded the Hunters' record by nearly 100 hours in a Curtiss Robin monoplane, [4] staying aloft for more than 27 days. [5]

The US was mainly concerned about transatlantic flights for faster postal service between Europe and America. In 1931 W. Irving Glover, the second assistant postmaster, wrote an extensive article for Popular Mechanics concerning the challenges and the need for such a regular service. In his article he even mentioned the use of aerial refueling after takeoff as a possible solution. [6]

At Le Bourget Airport near Paris, the Aéro-Club de France and the 34th Aviation Regiment of the French Air Force were able to demonstrate passing fuel between machines at the annual aviation fete at Vincennes in 1928. [7] The UK's Royal Aircraft Establishment was also running mid-air refueling trials, with the aim to use this technique to extend the range of the long-distance flying boats that serviced the British Empire. By 1931 they had demonstrated refueling between two Vickers Virginias, with fuel flow controlled by an automatic valve on the hose which would cut off if contact was lost. [8]

Royal Air Force officer Richard Atcherley had observed the dangerous aerial-refueling techniques in use at barnstorming events in the US and determined to create a workable system. [9] While posted to the Middle East he developed and patented his 'crossover' system in 1934, in which the tanker trailed a large hooked line that would reel in a similar dropped line from the receiver, allowing the refueling to commence. In 1935, Cobham sold off the airline Cobham Air Routes Ltd to Olley Air Service and turned to the development of inflight refueling, founding the company Flight Refuelling Ltd. Atcherly's system was bought up by Cobham's company, and with some refinement and continuous improvement through the late '30s, it became the first practical refueling system. [10]

Grappled-line looped-hose

The US Air Force Boeing B-50 Superfortress Lucky Lady II being refueled by grappled-line looped-hose during the first non-stop circumnavigation of the world by air (1949) 'Lucky Lady II" being refuelled by B-29M 45-21708 061215-F-1234S-002.jpg
The US Air Force Boeing B-50 Superfortress Lucky Lady II being refueled by grappled-line looped-hose during the first non-stop circumnavigation of the world by air (1949)

Sir Alan Cobham's grappled-line looped-hose air-to-air refueling system borrowed from techniques patented by David Nicolson and John Lord, and was publicly demonstrated for the first time in 1935. In the system the receiver aircraft, at one time an Airspeed Courier, trailed a steel cable which was then grappled by a line shot from the tanker, a Handley Page Type W10. The line was then drawn back into the tanker where the receiver's cable was connected to the refueling hose. The receiver could then haul back in its cable bringing the hose to it. Once the hose was connected, the tanker climbed sufficiently above the receiver aircraft to allow the fuel to flow under gravity. [11] [12]

When Cobham was developing his system, he saw the need as purely for long-range transoceanic commercial aircraft flights, [13] but modern aerial refueling is used exclusively by military aircraft.

In 1934, Cobham had founded Flight Refuelling Ltd (FRL) and by 1938 had used its looped-hose system to refuel aircraft as large as the Short Empire flying boat Cambria from an Armstrong Whitworth AW.23. [5] Handley Page Harrows were used in the 1939 trials to perform aerial refueling of the Empire flying boats for regular transatlantic crossings. From 5 August to 1 October 1939, sixteen crossings of the Atlantic were made by Empire flying boats, with fifteen crossings using FRL's aerial refueling system. [14] After the sixteen crossings further trials were suspended due to the outbreak of World War II. [15]

During the closing months of World War II, it had been intended that Tiger Force's Lancaster and Lincoln bombers would be in-flight refueled by converted Halifax tanker aircraft, fitted with the FRL's looped-hose units, in operations against the Japanese homelands, but the war ended before the aircraft could be deployed. After the war ended, the USAF bought a small number of FRL looped-hose units and fitted a number of B-29s as tankers to refuel specially equipped B-29s and later B-50s. The USAF made only one major change in the system used by the RAF. The USAF version had auto-coupling of the refueling nozzle, where the leader line with the refueling hose is pulled to the receiver aircraft and a refueling receptacle on the belly of the aircraft, allowing high-altitude air-to-air refueling and doing away with the aircraft having to fly to a lower altitude to be depressurized so a crew member could manually do the coupling. [16]

This air-to-air refueling system was used by the B-50 Superfortress Lucky Lady II of the 43rd Bomb Wing to make its famous first non-stop around-the-world flight in 1949. [17] [18] From 26 February to 3 March 1949, Lucky Lady II flew non-stop around the world in 94 hours and 1 minute, a feat made possible by four aerial refuelings from four pairs of KB-29M tankers of the 43d ARS. Before the mission, crews of the 43rd had experienced only a single operational air refueling contact. The flight started and ended at Carswell Air Force Base in Fort Worth, Texas with the refuelings accomplished over the Azores, Saudi Arabia, the Pacific Ocean near Guam, and between Hawaii and the West Coast. [19]

Probe-and-drogue system

Cobham's company FRL soon realized that their looped-hose system left much to be desired and began work on an improved system that is now commonly called the probe-and-drogue air-to-air refueling system and today is one of the two systems chosen by air forces for air-to-air refueling, the other being the flying-boom system. In post-war trials the RAF used a modified Lancaster tanker employing the much improved probe-and-drogue system, with a modified Gloster Meteor F.3 jet fighter, serial EE397, fitted with a nose-mounted probe. [20] [21] On 7 August 1949, the Meteor flown by FRL test pilot Pat Hornidge took off from Tarrant Rushton and remained airborne for 12 hours and 3 minutes, receiving 2,352 imperial gallons (10,690 L) of fuel in ten refuelings from a Lancaster tanker. Hornidge flew an overall distance of 3,600 mi (5,800 km), achieving a new jet endurance record. [22] [23] FRL still exists as part of Cobham plc.

Modern specialized tanker aircraft have equipment specially designed for the task of offloading fuel to the receiver aircraft, based on drogue and probe, even at the higher speeds modern jet aircraft typically need to remain airborne.

In January 1948, General Carl Spaatz, then the first Chief of Staff of the new United States Air Force, made aerial refueling a top priority of the service. In March 1948, the USAF purchased two sets of FRL's looped-hose in-flight refueling equipment, which had been in practical use with British Overseas Airways Corporation (BOAC) since 1946, and manufacturing rights to the system. FRL also provided a year of technical assistance. The sets were immediately installed in two Boeing B-29 Superfortresses, with plans to equip 80 B-29s.

Flight testing began in May 1948 at Wright-Patterson Air Force Base, Ohio, and was so successful that in June orders went out to equip all new B-50s and subsequent bombers with receiving equipment. Two dedicated air refueling units were formed on 30 June 1948: the 43d Air Refueling Squadron at Davis-Monthan Air Force Base, Arizona, and the 509th Air Refueling Squadron at Walker Air Force Base, New Mexico. The first ARS aircraft used FRL's looped-hose refueling system, but testing with a boom system followed quickly in the autumn of 1948.

The first use of aerial refueling in combat took place during the Korean War, involving F-84 fighter-bombers flying missions from Japanese airfields, due to Chinese-North Korean forces overrunning many of the bases for jet aircraft in South Korea, refueling from converted B-29s using the drogue-and-probe in-flight refueling system with the probe located in one of the F-84's wing-tip fuel tanks.

Systems

Flying boom

Dutch Air Force KC-10 refueling boom Eindhoven Air Base (8613167434).jpg
Dutch Air Force KC-10 refueling boom

The flying boom is a rigid, telescoping tube with movable flight control surfaces that a boom operator on the tanker aircraft extends and inserts into a receptacle on the receiving aircraft. All boom-equipped tankers (e.g. KC-135 Stratotanker, KC-10 Extender, KC-46 Pegasus) have a single boom and can refuel one aircraft at a time with this mechanism.

History

In the late 1940s, General Curtis LeMay, commander of the Strategic Air Command (SAC), asked Boeing to develop a refueling system that could transfer fuel at a higher rate than had been possible with earlier systems using flexible hoses, resulting in the flying boom system. The B-29 was the first to employ the boom, and between 1950 and 1951, 116 original B-29s, designated KB-29Ps, were converted at the Boeing plant at Renton, Washington. Boeing went on to develop the world's first production aerial tanker, the KC-97 Stratofreighter, a piston-engined Boeing Stratocruiser (USAF designation C-97 Stratofreighter) with a Boeing-developed flying boom and extra kerosene (jet fuel) tanks feeding the boom. The Stratocruiser airliner itself was developed from the B-29 bomber after World War II. In the KC-97, the mixed gasoline/kerosene fuel system was clearly not desirable and it was obvious that a jet-powered tanker aircraft would be the next development, having a single type of fuel for both its own engines and for passing to receiver aircraft. The 230 mph (370 km/h) cruise speed of the slower, piston-engined KC-97 was also a serious issue, as using it as an aerial tanker forced the newer jet-powered military aircraft to slow down to mate with the tanker's boom, a highly serious issue with the newer supersonic aircraft coming into service at that time, which could force such receiving aircraft in some situations to slow down enough to approach their stall speed during the approach to the tanker. It was no surprise that, after the KC-97, Boeing began receiving contracts from the USAF to build jet tankers based on the Boeing 367-80 (Dash-80) airframe. The result was the Boeing KC-135 Stratotanker, of which 732 were built.

The flying boom is attached to the rear of the tanker aircraft. The attachment is gimballed, allowing the boom to move with the receiver aircraft. The boom contains a rigid pipe to transfer fuel. The fuel pipe ends in a nozzle with a flexible ball joint. The nozzle mates to the "receptacle" in the receiver aircraft during fuel transfer. A poppet valve in the end of the nozzle prevents fuel from exiting the tube until the nozzle properly mates with the receiver's refueling receptacle. Once properly mated, toggles in the receptacle engage the nozzle, holding it locked during fuel transfer.

The "flying" boom is so named because flight control surfaces, small movable airfoils that are often in a V-tail configuration, are used to move the boom by creating aerodynamic forces. They are actuated hydraulically and controlled by the boom operator using a control stick. The boom operator also telescopes the boom to make the connection with the receiver's receptacle.

To complete an aerial refueling, the tanker and receiver aircraft rendezvous, flying in formation. The receiver moves to a position behind the tanker, within safe limits of travel for the boom, aided by director lights or directions radioed by the boom operator. Once in position, the operator extends the boom to make contact with the receiver aircraft. Once in contact, fuel is pumped through the boom into the receiver aircraft.

USAF KC-135 boom operator view from the boom pod. KC-135Boom-operator-521.jpg
USAF KC-135 boom operator view from the boom pod.

While in contact, the receiver pilot must continue to fly within the "air refueling envelope", the area in which contact with the boom is safe. Moving outside of this envelope can damage the boom or lead to mid-air collision, for example the 1966 Palomares B-52 crash. If the receiving aircraft approaches the outer limits of the envelope, the boom operator will command the receiver pilot to correct their position and disconnect the boom if necessary.

When the desired amount of fuel has been transferred, the two aircraft disconnect and the receiver aircraft departs the formation. When not in use, the boom is stored flush with the bottom of the tanker's fuselage to minimize drag.

In the KC-97 and KC-135 the boom operator lays prone, while the operator is seated in the KC-10, all viewing operations through a window at the tail. The KC-46 seats two operators at the front of the aircraft viewing camera video on 3D screens.

The US Air Force fixed-wing aircraft use the flying boom system, along with countries operating F-16 or F-15 variants. The system is used by Australia (KC-30A), the Netherlands (KDC-10), Israel (modified Boeing 707), Japan (KC-767), Turkey (KC-135Rs), and Iran (Boeing 747). The system allows higher fuel flow rates (up to 1,000 US gallons (3,800 L) / 6,500 pounds (2,900 kg) per minute for the KC-135, but does require a boom operator, and can only refuel one aircraft at a time.

Probe-and-drogue

Using a probe-and-drogue, a Royal Air Force C-130K Hercules crew practice refuelling from an RAF VC10 tanker over the Falkland Islands, 2005 Fuel Prices Rise Again MOD 45146995.jpg
Using a probe-and-drogue, a Royal Air Force C-130K Hercules crew practice refuelling from an RAF VC10 tanker over the Falkland Islands, 2005

The probe-and-drogue refueling method employs a flexible hose that trails from the tanker aircraft. The drogue (or para-drogue), sometimes called a basket, is a fitting resembling a shuttlecock, attached at its narrow end (like the "cork" nose of a shuttlecock) with a valve to a flexible hose. The drogue stabilizes the hose in flight and provides a funnel to aid insertion of the receiver aircraft probe into the hose. The hose connects to a Hose Drum Unit (HDU). When not in use, the hose/drogue is reeled completely into the HDU.

The receiver has a probe, which is a rigid, protruding or pivoted retractable arm placed on the aircraft's nose or fuselage to make the connection. Most modern versions of the probe are usually designed to be retractable, and are retracted when not in use, particularly on high-speed aircraft.[ citation needed ]

At the end of the probe is a valve that is closed until it mates with the drogue's forward internal receptacle, after which it opens and allows fuel to pass from tanker to receiver. The valves in the probe and drogue that are most commonly used are to a NATO standard and were originally developed by the company Flight Refuelling Limited in the UK and deployed in the late 1940s and 1950s.[ citation needed ] This standardization enables drogue-equipped tanker aircraft from many nations to refuel probe-equipped aircraft from other nations.

The NATO-standard probe system incorporates shear rivets that attach the refueling valve to the end of the probe.[ citation needed ] This is so that if a large side or vertical load develops while in contact with the drogue, the rivets shear and the fuel valve breaks off, rather than the probe or receiver aircraft suffering structural damage. A so-called "broken probe" (actually a broken fuel valve, as described above) may happen if poor flying technique is used by the receiver pilot, or in turbulence. Sometimes the valve is retained in the tanker drogue and prevents further refueling from that drogue until removed during ground maintenance.

Buddy store

An F/A-18E Super Hornet of the US Navy acts as a buddy tanker for a Rafale of the French Navy over the Arabian Sea, 2015 FA-18E of VFA-81 refuels Rafale of Flottille 11F in March 2015.JPG
An F/A-18E Super Hornet of the US Navy acts as a buddy tanker for a Rafale of the French Navy over the Arabian Sea, 2015

A "buddy store" or "buddy pod" is an external pod loaded on an aircraft hardpoint that contains a hose and drogue system (HDU). [24] Buddy stores allow fighter /bomber aircraft to be reconfigured for "buddy tanking" other aircraft. This allows an air combat force without dedicated/specialized tanker support (for instance, a carrier air wing) to extend the range of its strike aircraft. In other cases, using the buddy store method allows a carrier-based aircraft to take-off with a heavier than usual load less fuel than might be necessary for its tasking. The aircraft would then topped-up with fuel from an HDU-equipped "buddy" tanker, a method previously used by the Royal Navy in operating its Supermarine Scimitar, de Havilland Sea Vixen, and Blackburn Buccaneers; in the Buccaneer's case using a bomb-bay-mounted tank and HDU.

A KC-130 Hercules refuels a pair of CH-53E Super Stallions US Navy 110610-N-KA046-002 Two MH-53E Super Stallion helicopters assigned to Marine Medium Tiltrotor Squadron (VMM) 263 (Reinforced), 22nd Marine E (cropped).jpg
A KC-130 Hercules refuels a pair of CH-53E Super Stallions

The tanker aircraft flies straight and level and extends the hose/drogue, which is allowed to trail out behind and below the tanker under normal aerodynamic forces. The pilot of the receiver aircraft extends the probe (if required) and uses normal flight controls to "fly" the refueling probe directly into the basket. This requires a closure rate of about two knots (walking speed) to push the hose several feet into the HDU and solidly couple the probe and drogue. Too little closure will cause an incomplete connection and no fuel flow (or occasionally leaking fuel). Too much closure is dangerous because it can trigger a strong transverse oscillation in the hose, severing the probe tip.

The optimal approach is from behind and below (not level with) the drogue. Because the drogue is relatively light (typically soft canvas webbing) and subject to aerodynamic forces, it can be pushed around by the bow wave of approaching aircraft, exacerbating engagement even in smooth air. After initial contact, the hose and drogue is pushed forward by the receiver a certain distance (typically, a few feet), and the hose is reeled slowly back onto its drum in the HDU. This opens the tanker's main refueling valve allowing fuel to flow to the drogue under the appropriate pressure (assuming the tanker crew has energized the pump). Tension on the hose is aerodynamically 'balanced' by a motor in the HDU so that as the receiver aircraft moves fore and aft, the hose retracts and extends, thus preventing bends in the hose that would cause undue side loads on the probe. Fuel flow is typically indicated by illumination of a green light near the HDU. If the hose is pushed in too far or not far enough, a cutoff switch will inhibit fuel flow, which is typically accompanied by an amber light. Disengagement is commanded by the tanker pilot with a red light. [24]

The US Navy, Marine Corps, and some Army aircraft refuel using the "hose-and-drogue" system, as do most aircraft flown by western European militaries. The Soviet Union also used a hose-and-drogue system, dubbed UPAZ, [25] and thus later Russian aircraft may be equipped with probe and drogue. The Chinese PLAF has a fleet of Xian H-6 bombers modified for aerial refueling, and plans to add Russian Ilyushin Il-78 aerial refueling tankers. [26] Tankers can be equipped with multipoint hose-and-drogue systems, allowing them to refuel two (or more) aircraft simultaneously, reducing time spent refueling by as much as 75% for a four-aircraft strike package. [27]

Boom drogue adapter units

A US Air Force KC-135 with a drogue adapter attached to its boom 20200311 KC-135 Stratotanker Tail 62-3565-Kadena AB-41.jpg
A US Air Force KC-135 with a drogue adapter attached to its boom

USAF KC-135 and French Air Force KC-135FR refueling-boom equipped tankers can be field-converted to a probe-and-drogue system using a special adapter unit. In this configuration, the tanker retains its articulated boom, but has a hose/drogue at the end of it instead of the usual nozzle. The tanker boom operator holds the boom still while the receiver aircraft flies the probe into the basket. Unlike the soft canvas basket used in most drogue systems, the adapter units use a steel basket, grimly known as the "iron maiden" by naval aviators because of its unforgiving nature. Soft drogues can be contacted slightly off center, wherein the probe is guided into the hose receptacle by the canvas drogue. The metal drogue, when contacted even slightly off center, will pivot out of place, potentially "slapping" the aircraft's fuselage and causing damage.

The other major difference with this system is that when contacted, the hose does not "retract" into an HDU. Instead, the hose bends depending on how far it is pushed toward the boom. If it is pushed too far, it can loop around the probe or nose of the aircraft, damage the windscreen, or cause contact with the rigid boom. If not pushed far enough, the probe will disengage, halting fueling. Because of a much smaller position-keeping tolerance, staying properly connected to a KC-135 adapter unit is considerably more difficult than staying in a traditional hose/drogue configuration. When fueling is complete, the receiver carefully backs off until the probe refueling valve disconnects from the valve in the basket. Off center disengagements, like engagements, can cause the drogue to "prang" the probe and/or strike the aircraft's fuselage.

Multiple systems

A KC-10 Extender KC-10 Extender with the 76th Air Refueling Squadron.jpg
A KC-10 Extender

Some tankers have both a boom and one or more complete hose-and-drogue systems. The USAF KC-10 has both a flying boom and a separate hose-and-drogue system manufactured by Cobham. Both are on the aircraft centerline at the tail of the aircraft, so only one can be used at once. However, such a system allows all types of probe- and receptacle-equipped aircraft to be refueled in a single mission, without landing to install an adapter. Many KC-135s are also equipped with dual under-wing hose-and-drogue attachments known as Multi-point Refueling System (MPRSs); some KC-10s have similar Wing Air Refueling Pods (WARPs).

Wing-to-wing

A small number of Soviet Tu-4s and Tu-16s (the tanker variant was Tu-16Z). used a wing-to-wing method. Similar to the probe-and-drogue method but more complicated, the tanker aircraft released a flexible hose from its wingtip. An aircraft flying alongside had to catch the hose with a special lock under its wingtip. After the hose was locked and the connection was established, the fuel was pumped. [28]

Simple grappling

Some historic systems used for pioneering aerial refueling used the grappling method, where the tanker aircraft unreeled the fuel hose and the receiver aircraft would grapple the hose midair, reel it in and connect it so that fuel can be transferred either with the assistance of pumps or simply by gravity feed. This was the method used on the Question Mark endurance flight in 1929.

Compatibility issues

The probe-and-drogue system is not compatible with flying boom equipment, creating a problem for military planners where mixed forces are involved. [29] Incompatibility can also complicate the procurement of new systems. The Royal Canadian Air Force currently wish to purchase the F-35A, which can only refuel via the flying boom, but only possess probe-and-drogue refuelers. The potential cost of converting F-35As to probe-and-drogue refueling (as is used on US Navy & Marine Corps F-35Bs and F-35Cs) added to the early-2010s political controversy which surrounded F-35 procurement within the RCAF. [30] [ needs update ]

These concerns can be addressed by drogue adapters (see section "Boom drogue adapter units" above) that allow drogue aircraft to refuel from boom-equipped aircraft, and by refuelers that are equipped with both drogue and boom units and can thus refuel both types in the same flight, such as the KC-10, MPRS KC-135, or Airbus A330 MRTT.

Strategic

A C-17 Globemaster III receives fuel from a KC-135 during night operations. A KC-135 Stratotanker from the 127th Air Refueling Group performs a night time refueling for a C-17 Globemaster III.jpg
A C-17 Globemaster III receives fuel from a KC-135 during night operations.

The development of the KC-97 and Boeing KC-135 Stratotankers was pushed by the Cold War requirement of the United States to be able to keep fleets of nuclear-armed B-47 Stratojet and B-52 Stratofortress strategic bombers airborne around-the-clock either to threaten retaliation against a Soviet strike for mutual assured destruction, or to bomb the USSR first had it been ordered to do so. The bombers would fly orbits around their assigned positions from which they were to enter Soviet airspace if they received the order, and the tankers would refill the bombers' fuel tanks so that they could keep a force in the air 24 hours a day, and still have enough fuel to reach their targets in the Soviet Union. This also ensured that a first strike against the bombers' airfields could not obliterate the US's ability to retaliate by bomber.

In 1958, Valiant tankers in the UK were developed with one HDU mounted in the bomb-bay. Valiant tankers of 214 Squadron were used to demonstrate radius of action by refueling a Valiant bomber non-stop from UK to Singapore in 1960 and a Vulcan bomber to Australia in 1961. Other UK exercises involving refueling aircraft from Valiant tankers included Javelin and Lightning fighters, also Vulcan and Victor bombers. For instance, in 1962 a squadron of Javelin air defense aircraft was refueled in stages from the UK to India and back (exercise "Shiksha"). After the retirement of the Valiant in 1965, the Handley Page Victor took over the UK refueling role and had three hoses (HDUs). These were a fuselage-mounted HDU and a refueling pod on each wing. The center hose could refuel any probe-equipped aircraft, the wing pods could refuel the more maneuverable fighter/ground attack types.

A byproduct of this development effort and the building of large numbers of tankers was that these tankers were also available to refuel cargo aircraft, fighter aircraft, and ground attack aircraft, in addition to bombers, for ferrying to distant theaters of operations. This was much used during the Vietnam War, when many aircraft could not have covered the transoceanic distances without aerial refueling, even with intermediate bases in Hawaii and Okinawa. In addition to allowing the transport of the aircraft themselves, the cargo aircraft could also carry matériel, supplies, and personnel to Vietnam without landing to refuel. KC-135s were also frequently used for refueling of air combat missions from air bases in Thailand.

The USAF SR-71 Blackbird strategic reconnaissance aircraft made frequent use of air-to-air refueling. Indeed, design considerations of the aircraft made its mission impossible without aerial refueling. Based at Beale AFB in central California, SR-71s had to be forward-deployed to Europe and Japan prior to flying actual reconnaissance missions. These trans-Pacific and trans-Atlantic flights during deployment were impossible without aerial refueling. The SR-71's designers traded takeoff performance for better high-speed, high-altitude performance, necessitating takeoff with less-than-full fuel tanks from even the longest runways. Once airborne, the Blackbird would accelerate to supersonic speed using afterburners to facilitate structural heating and expansion. The magnitude of temperature changes experienced by the SR-71, from parked to its maximum speed, resulted in significant expansion of its structural parts in cruise flight. To allow for the expansion, the Blackbird's parts had to fit loosely when cold, so loosely, in fact, that the Blackbird constantly leaked fuel before heating expanded the airframe enough to seal its fuel tanks. Following the supersonic dash the SR-71 would then rendezvous with a tanker to fill its now nearly empty tanks before proceeding on its mission. This was referred to as the LTTR (for "Launch To Tanker Rendezvous") profile. LTTR had the added advantage of providing an operational test of the Blackbird's refueling capability within minutes after takeoff, enabling a Return-To-Launch-Site abort capability if necessary. At its most efficient altitude and speed, the Blackbird was capable of flying for many hours without refueling. The SR-71 used a special fuel, JP-7, with a very high flash point to withstand the extreme skin temperatures generated during Mach 3+ cruise flight. [31] While JP-7 could be used by other aircraft, its burn characteristics posed problems in certain situations (such as high-altitude, emergency engine starts) that made it less than optimal for aircraft other than the SR-71.

Normally, all the fuel aboard a tanker aircraft may be either offloaded, or burned by the tanker as necessary. To make this possible, the KC-135 fuel system incorporated gravity draining and pumps to allow moving fuel from tank to tank depending on mission needs. Mixing JP-7 with JP-4 or Jet A, however, rendered it unsuitable for use by the SR-71, so the Air Force commissioned a specially modified KC-135 variant, the KC-135Q, which included changes to the fuel system and operating procedures preventing inadvertent inflight mixing of fuel intended for offload with fuel intended for use by the tanker. SR-71 aircraft were refueled exclusively by KC-135Q tankers.

A Russian Air Force Sukhoi Su-34 takes on fuel through a Probe-and-drogue system Refuelling a Sukhoi Su-34 (cropped).jpg
A Russian Air Force Sukhoi Su-34 takes on fuel through a Probe-and-drogue system

Tactical

Tankers are considered "force multipliers", because they convey considerable tactical advantages. Primarily, aerial refueling adds to the combat radius of attack, fighter and bombers aircraft, and allows patrol aircraft to remain airborne longer, thereby reducing the number of aircraft necessary to accomplish a given mission. Aerial refueling can also mitigate basing issues that might otherwise place limitations on combat payload. Combat aircraft operating from airfields with shorter runways must limit their takeoff weight, which could mean a choice between range (fuel) and combat payload (munitions). Aerial refueling, however, eliminates many of these basing difficulties because a combat aircraft can take off with a full combat payload and refuel immediately.

Operational history

Cold War

Even as the first practical methods for aerial refueling were being developed, military planners had already envisioned what missions could be greatly enhanced by using such techniques. In the emerging Cold War climate of the late 1940s, the ability for bombers to perform increasingly long distance missions would enable targets to be struck even from air bases on a different continent. Thus, it became commonplace for nuclear-armed strategic bombers to be equipped with aerial refuelling apparatus and for it to be used to facilitate long distance patrols. [32]

During the late 1950s, aerial refuelling had become so prevalent amongst the bombers operated by the US Air Force's Strategic Air Command that many, such as the Convair B-58 Hustler, would operate largely or entirely out of bases in the continental United States while maintaining strategic reach. [32] This practice was promoted to address security concerns as well as diplomatic objections from some overseas nations that did not want foreign nuclear weapons being kept on their soil. [32] In one early demonstration of the Boeing B-52 Stratofortress's global reach, performed between 16 and 18 January 1957, three B-52Bs made a non-stop flight around the world during Operation Power Flite , during which 24,325 miles (21,145 nmi, 39,165 km) was covered in 45 hours 19 minutes (536.8 smph) with multiple in-flight refuelings being performed from KC-97s. [33] [34]

While development of the Avro Vulcan strategic bomber was underway, British officials recognised that its operational flexibility could be improved by the provision of in-flight refuelling equipment. [35] Accordingly, from the 16th aircraft to be completed onwards, the Vulcan was furnished with in-flight refuelling receiving equipment. [36] [37] While continuous airborne patrols were flown by the RAF for a time, these were deemed to be untenable, and the refuelling mechanisms across the Vulcan fleet largely fell into disuse during the 1960s. [37] When the RAF chose to optimise its bomber fleet away from high-altitude flight and towards low-level penetration missions, bombers such as the Handley Page Victor were fitted with aerial refuelling probes and additional fuel tanks to counter the decreased range from the shift in flight profile. [38] [39]

During the mid-1950s, to deliver France's independent nuclear deterrent, work commenced on what would become the Dassault Mirage IV supersonic bomber. [40] [41] The dimensions of this bomber was greatly determined by the viability of aerial refuelling, with work on an enlarged variant of the Mirage IV ultimately being aborted in favour of a greater reliance upon aerial tanker aircraft instead. [42] In order to refuel the Mirage IVA fleet, France purchased 14 (12 plus 2 spares) US Boeing C-135F tankers. [40] Mirage IVAs also often operated in pairs, with one aircraft carrying a weapon and the other carrying fuel tanks and a buddy refueling pack, allowing it to refuel its partner en route to the target. [43] While able to strike at numerous targets inside of the Soviet Union, the inability for the Mirage IV to return from some missions had been a point of controversy during the aircraft's design phase. [44] [45]

Korean War

On 6 July 1951, the first combat air refueling of fighter-type aircraft took place over Korea. Three RF-80As launched from Taegu with the modified tip-tanks and rendezvoused with a tanker offshore of Wonsan, North Korea. Through in-flight refueling, the RF-80s effectively doubled their range, which enabled them to photograph valuable targets in North Korea. [46] [47]

Vietnam War

HC-130P refuels HH-3E over Southeast Asia HC-130P refuels HH-3E over Southeast Asia (cropped).jpg
HC-130P refuels HH-3E over Southeast Asia

During the Vietnam War, it was common for USAF fighter-bombers flying from Thailand to North Vietnam to refuel from KC-135s en route to their target. Besides extending their range, this enabled the F-105s and F-4 Phantoms to carry more bombs and rockets. Tankers were also available for refueling on the way back if necessary. In addition to ferrying aircraft across the Pacific Ocean, aerial refueling made it possible for battle-damaged fighters, with heavily leaking fuel tanks, to hook up to the tankers and let the tanker feed its engine(s) until the point where they could glide to the base and land. This saved numerous aircraft. [ citation needed ]

The US Navy frequently used carrier-based aerial tankers like the KA-3 Skywarrior to refuel Navy and Marine aircraft such as the F-4, A-4 Skyhawk, A-6 Intruder, and A-7 Corsair II. This was particularly useful when a pilot returning from an airstrike was having difficulty landing and was running low on jet fuel. This gave them fuel for more attempts at landing for a successful "trap" on an aircraft carrier. The KA-3 could also refuel fighters on extended Combat Air Patrol. USMC jets based in South Vietnam and Thailand also used USMC KC-130 Hercules transports for air-to-air refueling on missions.

During late August 1970, a pair of HH-53C helicopters performed the first Trans-Pacific flight by a helicopter, flying from Eglin AFB in Florida to Danang in South Vietnam. In addition to making multiple en route stops to refuel on the ground, aerial refuelling was also used in this display of the type's long-range capabilities. The flight proved to be roughly four times faster than the traditional dispatching of rotorcraft to the theatre by ship. [48]

Middle East

During the 1980s Iran–Iraq War, the Iranian Air Force maintained at least one KC 707-3J9C aerial tanker, which the Islamic Republic had inherited from the Shah's government. This was used most effectively on 4 April 1981, refueling eight IRIAF F-4 Phantoms on long-range sorties into Iraq to bomb the H-3 Al Walid airfield near the Jordanian border, destroying 27–50 Iraqi fighter jets and bombers. [49] [50] However, the Iranian Air Force was forced to cancel its 180-day air offensive and attempts to control Iranian airspace due to unsustainable rates of attrition. [51] [52]

The Israeli Air Force has a fleet of Boeing 707s equipped with a boom refueling system similar to the KC-135, this system has the Israeli name Ram, used to refuel and extend the range of fighter bombers such as the F-15I and F-16I for deterrent and strike missions, they are nearing 60 years old and Israel does not disclose the number of tankers in their fleet. [53] [54] [55] In 1985, Israeli F-15s used heavily modified Boeing 707 aircraft to provide aerial refueling over the Mediterranean Sea in order to extend their range for Operation Wooden Leg, an air raid on the headquarters of the Palestine Liberation Organization (PLO) near Tunis, Tunisia, that necessitated a 2,000 km flight. [56] As of 2021 Israel has ordered four of a planned eight Boeing KC-46 Pegasus boom refueling tankers and has requested that the first two aircraft be fast-tracked for delivery in 2022 when they were to be delivered in 2023. The Jerusalem Post reports that Israeli commanders have made this request to enhance the strategic deterrence against Iran, the same article reports that the US, whose air force is also taking its first deliveries of the aircraft type, has refused to move forward the deliveries while supporting Israel's deterrence; the Jpost editor writing "The US State Department approved the possible sale of up to eight KC-46 tanker aircraft and related equipment to Israel for an estimated cost of $2.4 billion last March(i.e. 5/2020), marking the first time that Washington has allowed Jerusalem to buy new tankers." [55]

Falklands War

During the Falklands War, aerial refueling played a vital role in all of the successful Argentine attacks against the Royal Navy. The Argentine Air Force had only two KC-130H Hercules available and they were used to refuel both Air Force and Navy A-4 Skyhawks and Navy Super Etendards in their Exocet strikes. The Hercules on several occasions approached the islands (where the Sea Harriers were in patrol) to search and guide the A-4s in their returning flights. On one of those flights (callsign Jaguar) one of the KC-130s went to rescue a damaged A-4 and delivered 39,000 lb (18,000 kg) of fuel while carrying it to its airfield at San Julian. However, the Mirage IIIs and Daggers lack of air refueling capability prevented them from achieving better results. The Mirages were unable to reach the islands with a strike payload, and the Daggers could do so only for a five-minute strike flight.

On the British side, air refueling was carried out by the Handley Page Victor K.2 and, after the Argentine surrender, by modified C-130 Hercules tankers. These aircraft aided deployments from the UK to the Ascension Island staging post in the Atlantic and further deployments south of bomber, transport and maritime patrol aircraft. [57] The most famous refueling missions were the 8,000 nmi (15,000 km) "Operation Black Buck" sorties which used 14 Victor tankers to allow an Avro Vulcan bomber (with a flying reserve bomber) to attack the Argentine-captured airfield at Port Stanley on the Falkland Islands. With all the aircraft flying from Ascension, the tankers themselves needed refueling. [58] [59] [60] The raids were the longest-range bombing raids in history until surpassed by the Boeing B-52s flying from the States to bomb Iraq in the 1991 Gulf War and later B-2 flights. [61]

Gulf War

During the time of Operation Desert Shield, the military buildup to the Persian Gulf War, US Air Force Boeing KC-135s & McDonnell Douglas KC-10As, and USMC KC-130 Hercules aircraft were deployed to forward air bases in England, Diego Garcia, and Saudi Arabia. Aircraft stationed in Saudi Arabia normally maintained an orbit in the Saudi–Iraqi neutral zone, informally known as "Frisbee", and refueled coalition aircraft whenever necessary. Two side by side tracks over central Saudi Arabia called "Prune" and "Raisin" featured 2–4 basket equipped KC-135 tankers each and were used by Navy aircraft from the Red Sea Battle Force. Large Navy strike groups from the Red Sea would send A-6 tankers to the Prune and Raisin tracks ahead of the strike aircraft arriving to top off and take up station to the right of the Air Force tankers thereby providing an additional tanking point. RAF Handley Page Victor and Vickers VC10 tankers were also used to refuel British and coalition aircraft and were popular with the US Navy for their docile basket behavior and having three point refueling stations. An additional track was maintained close to the northwest border for the E-3 AWACS aircraft and any Navy aircraft needing emergency fuel. These 24-hour air-refueling zones enabled the intense air campaign during Desert Storm. An additional 24/7 tanker presence was maintained over the Red Sea itself to refuel Navy F-14 Tomcats maintaining Combat Air Patrol tracks. During the conflict's final week, KC-10s moved inside Iraq to support barrier CAP missions set up to block Iraqi fighters from escaping to Iran.

A French Air Force EC725 is refueled by a Lockheed HC-130 during Exercise Angel Thunder Exercise Angel Thunder 2014 140512-F-IE715-1625.jpg
A French Air Force EC725 is refueled by a Lockheed HC-130 during Exercise Angel Thunder

On 16–17 January 1991, the first combat sortie of Operation Desert Storm, and the longest combat sortie in history at that time, was launched from Barksdale AFB, Louisiana. Seven B-52Gs flew a thirty-five-hour mission to the region and back to launch 35 Boeing Air Launched Cruise Missiles (ALCMs) with the surprise use of conventional warheads. This attack, which successfully destroyed 85–95 percent of intended targets, would have been impossible without the support of refueling tankers. [62] [63]

An extremely useful tanker in Desert Storm was the USAF's KC-10A Extender. Besides being larger than the other tankers deployed, the KC-10A is equipped with the USAF "boom" refueling and also the "hose-and-drogue" system, enabling it to refuel not only USAF aircraft, and also USMC and US Navy jets that use the "probe-and-drogue" system, and also allied aircraft, such as those from the UK and Saudi Arabia. KC-135s may be equipped with a drogue depending on the mission profile. With a full jet fuel load, the KC-10A is capable of flying from a base on the American east coast, flying nonstop to Europe, transferring a considerable amount of fuel to other aircraft, and returning to its home base without landing anywhere else.[ citation needed ]

On 24 January 1991, the Iraqi Air Force launched the Attack on Ras Tanura, an attempt to bomb the Ras Tanura oil facility in Saudi Arabia. On their way to the target, the Iraqi attack aircraft were refueled by tanker at an altitude of 100 meters. The attack ultimately failed, with two aircraft turning back and the remaining two shot down. [64] [65]

Helicopters

Helicopter in-flight refueling (HIFR) is a variation of aerial refueling when a naval helicopter approaches a warship (not necessarily suited for landing operations) and receives fuel through the cabin while hovering. Alternatively, some helicopters like the HH-60 Pave Hawk are equipped with a probe extending out the front can be refueled from a drogue-equipped tanker aircraft in a similar manner to fixed-wing aircraft by matching a high forward speed for a helicopter to a slow speed for the fixed-wing tanker.

Longest crewed flight record

A mission modified Cessna 172 Skyhawk with a crew of two set the world record for the longest continuous crewed flight without landing of 64 days, 22 hours, 19 minutes, and five seconds in 1958. A Ford truck was outfitted with a fuel pump, tank, and other paraphernalia required to support the aircraft in flight. The publicity flight for a Las Vegas area hotel ended when the aircraft's performance had degraded to the point where the Cessna had difficulty climbing away from the refueling vehicle. [66] [67]

Developments

Operators

A RAAF KC-30 refuels a USAF F-16 KC-30 A39-002 refuelling an USAF F-16 (cropped).jpg
A RAAF KC-30 refuels a USAF F-16
Flag of Algeria.svg  Algeria
Flag of Argentina.svg  Argentina
Flag of Australia (converted).svg  Australia
Flag of Brazil.svg  Brazil
Flag of Canada (Pantone).svg  Canada
Flag of Chile.svg  Chile
Flag of the People's Republic of China.svg  China
Flag of Colombia.svg  Colombia
Flag of Egypt.svg  Egypt
Flag of France.svg  France
An IAF Ilyushin Il-78MKI provides mid-air refueling to two Mirage 2000 Ilyushin Il-78MKI (RK-3452).jpg
An IAF Ilyushin Il-78MKI provides mid-air refueling to two Mirage 2000
Flag of Germany.svg  Germany
Flag of India.svg  India
Flag of Indonesia.svg  Indonesia
Flag of Iran.svg  Iran
Flag of Israel.svg  Israel
Flag of Italy.svg  Italy
Flag of Japan.svg  Japan
Flag of South Korea.svg  South Korea
Flag of Kuwait.svg  Kuwait
Flag of Malaysia.svg  Malaysia
Two Saab JAS-39 Gripen of the Swedish Air Force undergoing inflight refuelling. Saab JAS-39 of the Swedish Air Force undergoing inflight refuelling from a TP 84 Hercules (cropped).jpg
Two Saab JAS-39 Gripen of the Swedish Air Force undergoing inflight refuelling.
Flag of Morocco.svg  Morocco
Flag of the Netherlands.svg  Netherlands
Flag of Pakistan.svg  Pakistan

Flag of Portugal.svg  Portugal

Flag of Russia.svg  Russia
Tu-95M filling rod and filling cone from Il-78M aircraft Tu-95 filling rod and filling cone from Il-78M aircraft.png
Tu-95М filling rod and filling cone from Il-78M aircraft
Flag of Singapore.svg  Singapore
Flag of Spain.svg  Spain
Flag of Sweden.svg  Sweden
Flag of Turkey.svg  Turkey
Flag of the United Arab Emirates.svg  United Arab Emirates
Flag of the United Kingdom.svg  United Kingdom
Flag of Saudi Arabia.svg  Saudi Arabia
A KC-46 Pegasus refuels a B-2 over Edwards AFB KC-46 Refuels B-2 over Edwards AFB.jpg
A KC-46 Pegasus refuels a B-2 over Edwards AFB
Flag of the United States (23px).png  United States
Flag of Venezuela.svg  Venezuela

See also

Notes

  1. "AAR" can also stand for After Action Review (i.e. debriefing); "IFR" also stands for Instrument Flight Rules.

Related Research Articles

<span class="mw-page-title-main">Boeing KC-135 Stratotanker</span> US military aerial refueling and transport aircraft

The Boeing KC-135 Stratotanker is an American military aerial refueling tanker aircraft that was developed from the Boeing 367-80 prototype, alongside the Boeing 707 airliner. It has a narrower fuselage and is shorter than the 707. Boeing gave the aircraft the internal designation of Model 717. The KC-135 was the United States Air Force (USAF)'s first jet-powered refueling tanker and replaced the KC-97 Stratofreighter. The KC-135 was initially tasked with refueling strategic bombers, but it was used extensively in the Vietnam War and later conflicts such as Operation Desert Storm to extend the range and endurance of US tactical fighters and bombers.

<span class="mw-page-title-main">McDonnell Douglas KC-10 Extender</span> US aerial refueling tanker aircraft

The McDonnell Douglas KC-10 Extender is an American tanker and cargo aircraft operated by the United States Air Force (USAF). A military version of the three-engine DC-10 airliner, the KC-10 was developed from the Advanced Tanker Cargo Aircraft Program. It incorporates military-specific equipment for its primary roles of aerial refueling and transport. It was developed to supplement the KC-135 Stratotanker following experiences in Southeast Asia and the Middle East. The KC-10 was the second McDonnell Douglas transport aircraft to be selected by the Air Force following the C-9. A total of 60 KC-10s were produced for the USAF. The Royal Netherlands Air Force operated two similar tankers designated KDC-10 that were converted from DC-10s.

<span class="mw-page-title-main">Future Strategic Tanker Aircraft</span> British project to procure new air-to-air refuelling tanker aircraft fleet for the Royal Air Force

Future Strategic Tanker Aircraft (FSTA) is the name given to a British project to procure a fleet of Airbus A330 MRTT aerial refuelling (AR) and air transport (AT) aircraft for the Royal Air Force (RAF), to replace their then existing older models such as the Vickers VC10s and Lockheed TriStars.

<span class="mw-page-title-main">Boeing C-97 Stratofreighter</span> Long-range heavy military cargo aircraft built 1944-1952

The Boeing C-97 Stratofreighter was a long-range heavy military cargo aircraft developed from the B-29 and B-50 bombers. Design work began in 1942, the first of three prototype XC-97s flew on 9 November 1944 and the first of six service-test YC-97s flew on 11 March 1947. All nine were based on the 24ST alloy structure and Wright R-3350 engines of the B-29, but with a larger-diameter fuselage upper lobe and they had the B-29 vertical tail with the gunner's position blanked off. The first of three heavily revised YC-97A incorporating the re-engineered wing, taller vertical tail and larger Pratt & Whitney R-4360 engines of the B-50 bomber, flew on 28 January 1948 and was the basis of the subsequent sole YC-97B, all production C-97s, KC-97s and civilian Stratocruiser aircraft. Between 1944 and 1958, 888 C-97s in several versions were built, 811 being KC-97 tankers. C-97s served in the Berlin Airlift, the Korean War, and the Vietnam War. Some aircraft served as flying command posts for the Strategic Air Command, while others were modified for use in Aerospace Rescue and Recovery Squadrons (ARRS).

<span class="mw-page-title-main">Airbus A310 MRTT</span> Airbus A310 Multi-Role Tanker Transport (MRTT) air to air refuelling tanker / transport aircraft

The Airbus A310 MRTT Multi-Role Tanker Transport is a military air-to-air refuelling, or in-flight refuelling tanker transport aircraft, capable of operating multi-role missions. The A310 MRTT tanker aircraft is a subsequent development from the earlier Airbus A310 MRT Multi-Role Transport, which was a military transport aircraft for passengers, cargo, and medical evacuation. The A310 MRT and A310 MRTT are both specialist military conversions of existing airframes of the civilian Airbus A310-300C wide-bodied passenger jet airliner.

<span class="mw-page-title-main">Airbus A330 MRTT</span> Aerial refuelling tanker aircraft

The Airbus A330 Multi Role Tanker Transport (MRTT) is a European aerial refuelling and military transport aircraft based on the civilian Airbus A330. A total of 16 countries have placed firm orders for approximately 68 aircraft, of which 51 had been delivered by 30 November 2020. A version of the A330 MRTT, the EADS/Northrop Grumman KC-45, was selected by the United States Air Force for its aerial tanker replacement programme, but the programme was cancelled.

<span class="mw-page-title-main">Boeing B-50 Superfortress</span> Piston-engined strategic bomber aircraft family, 1947

The Boeing B-50 Superfortress is an American strategic bomber. A post–World War II revision of the Boeing B-29 Superfortress, it was fitted with more powerful Pratt & Whitney R-4360 radial engines, stronger structure, a taller tail fin, and other improvements. It was the last piston-engined bomber built by Boeing for the United States Air Force, and was further refined into Boeing's final such design, the prototype B-54. Although not as well known as its direct predecessor, the B-50 was in USAF service for nearly 20 years.

<span class="mw-page-title-main">Boeing KC-767</span> 2000s American military tanker/transport aircraft

The Boeing KC-767 is a military aerial refueling tanker and transport aircraft developed from the Boeing 767-200ER. The tanker received the designation KC-767A, after being selected by the U.S. Air Force (USAF) initially to replace older KC-135Es. In December 2003, the contract was frozen and later canceled due to corruption allegations.

<span class="mw-page-title-main">Ilyushin Il-78</span> Soviet/Russian aerial refueling tanker

The Ilyushin Il-78 is a Soviet/Russian four-engined aerial refueling tanker based on the Il-76 strategic airlifter.

<span class="mw-page-title-main">No. 33 Squadron RAAF</span> Royal Australian Air Force tanker/transport squadron

No. 33 Squadron is a Royal Australian Air Force (RAAF) strategic transport and air-to-air refuelling squadron. It operates Airbus KC-30A Multi Role Tanker Transports from RAAF Base Amberley, Queensland. The squadron was formed in February 1942 for service during World War II, operating Short Empire flying boats and a variety of smaller aircraft. By 1944 it had completely re-equipped with Douglas C-47 Dakota transports, which it flew in New Guinea prior to disbanding in May 1946.

<span class="mw-page-title-main">Boeing KB-29 Superfortress</span> US heavy tanker aircraft with 4 piston engines, 1948

The Boeing KB-29 was a modified Boeing B-29 Superfortress for air refueling needs by the USAF. Two primary versions were developed and produced: KB-29M and KB-29P.

<i>Question Mark</i> (aircraft) Early experimental aerial refueling aircraft

Question Mark ("?") was a modified Atlantic-Fokker C-2A transport airplane of the United States Army Air Corps. In 1929, commanded by Major Carl A. Spaatz, it was flown for a flight endurance record as part of an experiment with aerial refueling. Question Mark established new world records in aviation for sustained flight (heavier-than-air), refueled flight, sustained flight (lighter-than-air), and distance between January 1 and January 7, 1929, in a nonstop flight of 151 hours near Los Angeles, California.

<span class="mw-page-title-main">Boom operator (military)</span> Aircrew member aboard tanker aircraft who is responsible for transferring fuel to receiver aircraft

In the U.S. Air Force (USAF), a boom operator is an aircrew member aboard tanker aircraft who is responsible for safely and effectively transferring aviation fuel from one military aircraft to another during flight. The name boom operator implies that one "operates a boom", which is a long, extendable metal arm attached to the rear underside of the tanker that the boom operator connects to the fuel receptacle of a receiving aircraft. The boom operator also controls the refueling drogue, a basket attached to a flexible hose that trails the tanker, when using the probe-and-drogue system. The USAF officially designates the boom operator career field as "In-Flight Refueling" with a specialty code of 1A0X1. However, this designation is usually reserved for administrative paperwork such as enlistment contracts and performance reports, as boom operators themselves are rarely referred to as in-flight refueling specialists within the USAF. The title "Boom Operator" is most commonly used, in reference to the aircrew position they occupy on the airplane, as noted in USAF regulations and aircraft flight manuals. Fellow crew members affectionately address them as "boom" or "boomer".

<span class="mw-page-title-main">EADS/Northrop Grumman KC-45</span> Proposed aerial refueling tanker aircraft

The EADS/Northrop Grumman KC-45 was a proposed aerial refueling tanker aircraft based on the Airbus A330 MRTT. The United States Air Force (USAF) had ordered 179 KC-45As in the first stage of replacing the aging Boeing KC-135 Stratotanker tankers currently in service. However, the contest was reopened in July 2008, after Boeing's protest of the award was upheld. In response to the new contest, on 8 March 2010, Northrop Grumman announced it was abandoning its bid for the new contract, with its CEO stating that the revised bid requirement favoured Boeing. On 20 April 2010, EADS announced it was re-entering the competition and entered a bid with the KC-45. Eventually, the USAF selected the Boeing KC-46 Pegasus.

Sargent Fletcher is a subsidiary company of Cobham plc. which makes aircraft equipment, including aerial refueling systems, external fuel tanks, and special purpose pods.

<span class="mw-page-title-main">KQ-X</span> Autonomous Aerial Refueling Drone

KQ-X was a $33 million DARPA program awarded to Northrop Grumman on July 1, 2010. KQ-X investigated and developed autonomous aerial refueling techniques using two NASA Global Hawk high-altitude long endurance (HALE) unmanned aerial vehicles (UAVs).

<span class="mw-page-title-main">421st Air Refueling Squadron</span> Military unit

The 421st Air Refueling Squadron is an inactive United States Air Force unit. It was last assigned to the 41st Air Division at Yokota Air Base, Japan, where it was inactivated on 18 February 1965.

<span class="mw-page-title-main">427th Air Refueling Squadron</span> Military unit

The 427th Air Refueling Squadron is an inactive United States Air Force unit. It was last assigned to the 4505th Air Refueling Wing at Langley Air Force Base, Virginia, where it was inactivated on 1 April 1963.

<span class="mw-page-title-main">Boeing KC-46 Pegasus</span> 2010s American military aerial refueling and transport aircraft

The Boeing KC-46 Pegasus is an American military aerial refueling and strategic military transport aircraft developed by Boeing from its 767 jet airliner. In February 2011, the tanker was selected by the United States Air Force (USAF) as the winner in the KC-X tanker competition to replace older Boeing KC-135 Stratotankers. The first aircraft was delivered to the USAF in January 2019. The USAF intends to procure 179 tankers by 2027.

References

Citations

  1. Nangia, R.K (November 2006). "Operations and aircraft design towards greener civil aviation using air-to-air refuelling" (PDF). The Aeronautical Journal. Paper No. 3088. (November): 705–721. doi:10.1017/S0001924000001585. S2CID   114942345. Archived from the original (PDF) on 21 October 2013. Retrieved 20 October 2011.
  2. Colin Cruddas, Highways to the Empire (Air Britain, 2006, ISBN   0-85130-376-5); G.H. Pirie, Air Empire: British Imperial Civil Aviation, 1919–39 (Manchester University Press, 2009), Chapter 6. ISBN   978-0-7190-4111-2; G.H. Pirie, Cultures and Caricatures of British imperial Aviation: Passengers, Pilots, Publicity (Manchester University Press, 2012), Chapter 4.
  3. There is no evidence of a relationship between A.D. Hunter and the Hunter brothers.
  4. "National Air and Space Museum image". Archived from the original on 16 April 2009.
  5. 1 2 History of Aviation, Part 19, 1938
  6. Hearst Magazines (February 1931). "Wings Across The Atlantic". Popular Mechanics. Hearst Magazines. p. 190. Archived from the original on 13 March 2023. Retrieved 4 June 2016.
  7. Flight Magazine archive, 10 January 1929
  8. Flight Magazine archive, 3 July 1931, p. 623
  9. Richard K. Smith. "Seventy Five Years of Inflight Refueling" (PDF). Archived (PDF) from the original on 24 August 2017. Retrieved 1 October 2013.
  10. "Mid-air refuelling in Gander". Archived from the original on 24 March 2017. Retrieved 4 October 2013.
  11. Bonnier Corporation (January 1947). "Gas Station In The Sky". Popular Science. Bonnier Corporation. p. 2.
  12. "Refuelling In Flight" , Flight Magazine, November 22, 1945 Archived 5 October 2013 at the Wayback Machine close-up drawing of receiver pawl grapnel and tanker haul line projectile
  13. "flight march – receiver aircraft – advertisements flight – 1947 – 0392 – Flight Archive". Archived from the original on 2 April 2015. Retrieved 19 November 2016.
  14. Note – on one flight there was a high westerly wind and no need for aerial refueling
  15. "imperial airways – 1940 – 1219 – Flight Archive". Archived from the original on 5 October 2013. Retrieved 19 November 2016.
  16. Bonnier Corporation (August 1948). "What Can Our Bombers Do Now?". Popular Science. Bonnier Corporation. p. 79. Archived from the original on 13 March 2023. Retrieved 4 June 2016.
  17. "flight – lucky lady – flight refuelling – 1949 – 0461 – Flight Archive". Archived from the original on 21 August 2016. Retrieved 19 November 2016.
  18. "B-50s In Great Britain" , Flight magazine, 1 September 1949
  19. Hallex, Steve. "Around the World in 94 Hours*". Logbook. 14 (1, 1st Quarter 2016).
  20. "Cobham 75 :: Air-to-Air Refuelling Takes off". Archived from the original on 8 July 2011. Retrieved 17 November 2009.
  21. Bonnier Corporation (October 1949). "Jet Refuels Like Humming Bird". Popular Science. Bonnier Corporation. p. 131. Archived from the original on 13 March 2023. Retrieved 16 May 2019.
  22. "Meteor's 12-hour Flight", Flight, 1949, archived from the original on 8 July 2017, retrieved 13 April 2014
  23. "50 Years of Probe and Drogue Flight Refuelling cover signed Air Chief Marshal Sir Michael Knight KCB AFC FRAES". Archived from the original on 4 March 2016. Retrieved 19 November 2016.
  24. 1 2 Naval Air Systems Command (1 August 2006). A1-F18AC-NFM-000 Naval Aviation Training and Operating Procedures Standardization (NATOPS) Manual. United States Department of the Navy. p. 364.
  25. "Inflight Refueling". Zvezda JSC. Archived from the original on 16 August 2007. Retrieved 6 July 2021.
  26. Cordesman & Kleiber 2007, p. 158.
  27. Maj. Marck R. Cobb, "Aerial Refueling: The Need for a Multipoint, Dual-System Capability," AU-ARI-CP-87-3, Air University Press, July 1987.
  28. note – even today there is much confusion about how this system actually worked
  29. Christopher, Bolkcom; D., Klaus, Jon (11 May 2005). "Air Force Aerial Refueling Methods: Flying Boom versus Hose-and-Drogue". Digital Library. Archived from the original on 11 May 2009. Retrieved 27 October 2017.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  30. "Canadian military unable to refuel new jets in mid-air". Macleans.ca. 31 January 2011. Archived from the original on 14 June 2015. Retrieved 13 June 2015.
  31. "Lockheed SR-71 Blackbird". Archived from the original on 17 March 2010. Retrieved 8 February 2014.
  32. 1 2 3 Farley, Robert (10 June 2016). "The B-58 Hustler: America's Cold War Nuclear Bomber Blunder". nationalinterest.org. Archived from the original on 23 April 2021. Retrieved 30 March 2021.
  33. Condor 1994, p. 42.
  34. Knaack 1988, p. 243.
  35. Wynn 1997, p. 154.
  36. Wynn 1997, p. 155.
  37. 1 2 Brookes and Davey 2009, p. 49.
  38. Rodwell Flight 13 February 1964, p. 241.
  39. Windle and Bowman 2009, p. 21.
  40. 1 2 Gunston 1973, p. 104.
  41. Gunston and Gilchrist 1993, p. 196.
  42. Gunston 1973, p. 109.
  43. Gunston and Gilchrist 1993, p. 200.
  44. Dumoulin, André, "La dissuasion nucléaire française en posture méditerranéenne" (PDF), Les Cahiers du RMES, II (1): 5–12, archived from the original (PDF) on 13 March 2012, retrieved 18 October 2010, (p. 5) Certes, la posture méditerranéenne ne pouvait totalement résoudre la question de l'autonomie après le largage de la bombe à gravité AN-21 puis AN-22, et il était imaginé, au pire, des vols «kamikaze» jusqu'aux cibles russes mais également des profils de vols de retour avec planification des zones de crash, avec l'abandon de l'équipage au-dessus de territoires alliés.
  45. Gunston and Gilchrist 1993, pp. 196–197.
  46. "History of aerial refueling: Fueling the fighters". United States Air Mobility Command. 15 April 2009. Archived from the original on 5 October 2017. Retrieved 6 July 2021.
  47. "First USAF Flight Refueling in Combat". Archived from the original on 11 April 2017. Retrieved 6 December 2020.
  48. "S-65/H-53A/D Sea Stallion/ H-53E Super Stallion". sikorskyarchives.com. Archived from the original on 23 March 2022. Retrieved 28 March 2021.
  49. "Assault on Al-Wallid". Imperial Iraniasn Air Force. Archived from the original on 11 October 2017. Retrieved 9 September 2012.
  50. Nadimi, Farzin. F-4 Phantom. Air Forces Monthly Special, ISBN   0-946219-46-X. p. 77.
  51. Cordesman, Anthony. "Lessons of Modern Warfare: The Iran Iraq War Chapter V" (PDF). Archived (PDF) from the original on 11 September 2009. Retrieved 4 May 2013.
  52. Cooper, Tom. "Bombed by Blinders Part 1". Archived from the original on 6 October 2014. Retrieved 20 April 2013.
  53. Israeli Air Force (10 October 2013). "תדלוק אווירי". Archived from the original on 7 November 2021. Retrieved 19 November 2016 via YouTube.
  54. "Israel's First Strike on Iran's Nuclear Facilities – Part 1 - Defense Media Network". Archived from the original on 20 November 2016. Retrieved 19 November 2016.
  55. 1 2 "US rejects Israeli request for tanker aircraft as Iran plans advance". 13 December 2021. Archived from the original on 13 December 2021. Retrieved 13 December 2021.
  56. Bergman 2018, p. 306.
  57. "The Falkland Islands: A history of the 1982 conflict." Royal Air Force, 29 April 2010. Archived 18 March 2007 at the Wayback Machine
  58. Darling 2007, pp. 116–117.
  59. Kev Darling, RAR Illustrated: Avro Vulcan Part 1, Big Bird Publications 2007, ISBN   978-1-84799-237-6 (p.119)
  60. "Narrative of RAF Contribution to the Falklands Campaign." The National Archives, Retrieved: 20 April 2014.
  61. Bull 2004, p. 84.
  62. "Factsheets: 2nd Bomb Wing History" Archived 26 September 2009 at the Wayback Machine . Barksdale Air Force Base, United States Air Force. Retrieved 19 September 2011.
  63. Boeing B-52 evolves again with guided weapons launcher Archived 20 August 2019 at the Wayback Machine – Flightglobal.com, 15 January 2016
  64. Woods, Kevin (May 2008). Iraqi Perspectives Project Phase II Um Al-Ma'arik (The Mother of All Battles): Operational and Strategic Insights from an Iraqi Perspective (First ed.). Institute for Defense Analysis. p. 199.
  65. Francoma, Rick (1999). Ally to Adversary: An Eyewitness Account of Iraq's Fall From Grace. Naval Institute Press. p. 106. ISBN   1557502811.
  66. "The Plane that Flew for 62 Days and the T-Bird that Saved the Day". 29 July 2008. Archived from the original on 20 November 2016. Retrieved 19 November 2016.
  67. "Endurance Test, Circa 1958". 3 January 2008. Archived from the original on 5 April 2016. Retrieved 19 November 2016.
  68. "Omega Air Refueling". Archived from the original on 12 May 2015. Retrieved 19 November 2016.
  69. "Metrea Strategic Mobility". Metrea. Archived from the original on 31 January 2023. Retrieved 31 January 2023.
  70. Trevithick, Joseph (12 July 2023). "Private Aerial Refueling Tanker Has Gassed Up An Air Force Plane For The First Time". The Drive. Retrieved 16 July 2023.
  71. "Ares". Archived from the original on 23 February 2012. Retrieved 19 November 2016.
  72. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 "World Air Forces 2020" . Flightglobal Insight. 2020. Archived from the original on 10 December 2019. Retrieved 1 April 2020.
  73. Jennings, Greg (14 January 2020). "Egypt demonstrates aerial refuelling for combat aircraft". Janes.com. Archived from the original on 6 September 2020. Retrieved 6 July 2021.
  74. McLaughlin, Andrew (22 January 2018). "Indonesia seeks new heavy air refuelling tanker". ABDR. Archived from the original on 3 April 2018. Retrieved 6 July 2021.
  75. Sharma, Soumya (17 October 2022). "Portuguese Air Force's first KC-390 aircraft arrives in Portugal". Airforce Technology. Retrieved 16 September 2023.

Bibliography