Closed graph theorem

Last updated
Cubicpoly.png
Dirac distribution CDF.svg
The graph of the cubic function on the interval is closed because the function is continuous. The graph of the Heaviside function on is not closed, because the function is not continuous.

In mathematics, the closed graph theorem may refer to one of several basic results characterizing continuous functions in terms of their graphs. Each gives conditions when functions with closed graphs are necessarily continuous.

Contents

Graphs and maps with closed graphs

If is a map between topological spaces then the graph of is the set or equivalently,

It is said that the graph of is closed if is a closed subset of (with the product topology).

Any continuous function into a Hausdorff space has a closed graph.

Any linear map, between two topological vector spaces whose topologies are (Cauchy) complete with respect to translation invariant metrics, and if in addition (1a) is sequentially continuous in the sense of the product topology, then the map is continuous and its graph, Gr L, is necessarily closed. Conversely, if is such a linear map with, in place of (1a), the graph of is (1b) known to be closed in the Cartesian product space , then is continuous and therefore necessarily sequentially continuous. [1]

Examples of continuous maps that do not have a closed graph

If is any space then the identity map is continuous but its graph, which is the diagonal , is closed in if and only if is Hausdorff. [2] In particular, if is not Hausdorff then is continuous but does not have a closed graph.

Let denote the real numbers with the usual Euclidean topology and let denote with the indiscrete topology (where note that is not Hausdorff and that every function valued in is continuous). Let be defined by and for all . Then is continuous but its graph is not closed in . [3]

Closed graph theorem in point-set topology

In point-set topology, the closed graph theorem states the following:

Closed graph theorem [4]   If is a map from a topological space into a Hausdorff space then the graph of is closed if is continuous. The converse is true when is compact. (Note that compactness and Hausdorffness do not imply each other.)

Proof

First part is essentially by definition.

Second part:

For any open , we check is open. So take any , we construct some open neighborhood of , such that .

Since the graph of is closed, for every point on the "vertical line at x", with , draw an open rectangle disjoint from the graph of . These open rectangles, when projected to the y-axis, cover the y-axis except at , so add one more set .

Naively attempting to take would construct a set containing , but it is not guaranteed to be open, so we use compactness here.

Since is compact, we can take a finite open covering of as .

Now take . It is an open neighborhood of , since it is merely a finite intersection. We claim this is the open neighborhood of that we want.

Suppose not, then there is some unruly such that , then that would imply for some by open covering, but then , a contradiction since it is supposed to be disjoint from the graph of .

Non-Hausdorff spaces are rarely seen, but non-compact spaces are common. An example of non-compact is the real line, which allows the discontinuous function with closed graph .

For set-valued functions

Closed graph theorem for set-valued functions [5]   For a Hausdorff compact range space , a set-valued function has a closed graph if and only if it is upper hemicontinuous and F(x) is a closed set for all .

In functional analysis

If is a linear operator between topological vector spaces (TVSs) then we say that is a closed operator if the graph of is closed in when is endowed with the product topology.

The closed graph theorem is an important result in functional analysis that guarantees that a closed linear operator is continuous under certain conditions. The original result has been generalized many times. A well known version of the closed graph theorems is the following.

Theorem [6] [7]   A linear map between two F-spaces (e.g. Banach spaces) is continuous if and only if its graph is closed.

See also

Notes

      Related Research Articles

      In mathematics, more specifically in functional analysis, a Banach space is a complete normed vector space. Thus, a Banach space is a vector space with a metric that allows the computation of vector length and distance between vectors and is complete in the sense that a Cauchy sequence of vectors always converges to a well defined limit that is within the space.

      In topology and related branches of mathematics, a Hausdorff space ( HOWS-dorf, HOWZ-dorf), separated space or T2 space is a topological space where for any two distinct points there exist neighbourhoods of each which are disjoint from each other. Of the many separation axioms that can be imposed on a topological space, the "Hausdorff condition" (T2) is the most frequently used and discussed. It implies the uniqueness of limits of sequences, nets, and filters.

      <span class="mw-page-title-main">Topological group</span> Group that is a topological space with continuous group action

      In mathematics, topological groups are logically the combination of groups and topological spaces, i.e. they are groups and topological spaces at the same time, such that the continuity condition for the group operations connects these two structures together and consequently they are not independent from each other.

      In mathematics, a topological vector space is one of the basic structures investigated in functional analysis. A topological vector space is a vector space that is also a topological space with the property that the vector space operations are also continuous functions. Such a topology is called a vector topology and every topological vector space has a uniform topological structure, allowing a notion of uniform convergence and completeness. Some authors also require that the space is a Hausdorff space. One of the most widely studied categories of TVSs are locally convex topological vector spaces. This article focuses on TVSs that are not necessarily locally convex. Banach spaces, Hilbert spaces and Sobolev spaces are other well-known examples of TVSs.

      <span class="mw-page-title-main">General topology</span> Branch of topology

      In mathematics, general topology is the branch of topology that deals with the basic set-theoretic definitions and constructions used in topology. It is the foundation of most other branches of topology, including differential topology, geometric topology, and algebraic topology. Another name for general topology is point-set topology.

      In functional analysis and related areas of mathematics, locally convex topological vector spaces (LCTVS) or locally convex spaces are examples of topological vector spaces (TVS) that generalize normed spaces. They can be defined as topological vector spaces whose topology is generated by translations of balanced, absorbent, convex sets. Alternatively they can be defined as a vector space with a family of seminorms, and a topology can be defined in terms of that family. Although in general such spaces are not necessarily normable, the existence of a convex local base for the zero vector is strong enough for the Hahn–Banach theorem to hold, yielding a sufficiently rich theory of continuous linear functionals.

      In functional analysis and related areas of mathematics, a barrelled space is a topological vector space (TVS) for which every barrelled set in the space is a neighbourhood for the zero vector. A barrelled set or a barrel in a topological vector space is a set that is convex, balanced, absorbing, and closed. Barrelled spaces are studied because a form of the Banach–Steinhaus theorem still holds for them. Barrelled spaces were introduced by Bourbaki (1950).

      In functional analysis, the open mapping theorem, also known as the Banach–Schauder theorem or the Banach theorem, is a fundamental result which states that if a bounded or continuous linear operator between Banach spaces is surjective then it is an open map.

      In mathematics, particularly in functional analysis, a webbed space is a topological vector space designed with the goal of allowing the results of the open mapping theorem and the closed graph theorem to hold for a wider class of linear maps whose codomains are webbed spaces. A space is called webbed if there exists a collection of sets, called a web that satisfies certain properties. Webs were first investigated by de Wilde.

      In functional analysis and related areas of mathematics, a complete topological vector space is a topological vector space (TVS) with the property that whenever points get progressively closer to each other, then there exists some point towards which they all get closer. The notion of "points that get progressively closer" is made rigorous by Cauchy nets or Cauchy filters, which are generalizations of Cauchy sequences, while "point towards which they all get closer" means that this Cauchy net or filter converges to The notion of completeness for TVSs uses the theory of uniform spaces as a framework to generalize the notion of completeness for metric spaces. But unlike metric-completeness, TVS-completeness does not depend on any metric and is defined for all TVSs, including those that are not metrizable or Hausdorff.

      In mathematics, particularly in functional analysis and topology, closed graph is a property of functions. A function f : XY between topological spaces has a closed graph if its graph is a closed subset of the product space X × Y. A related property is open graph.

      The theorem on the surjection of Fréchet spaces is an important theorem, due to Stefan Banach, that characterizes when a continuous linear operator between Fréchet spaces is surjective.

      In functional analysis, two methods of constructing normed spaces from disks were systematically employed by Alexander Grothendieck to define nuclear operators and nuclear spaces. One method is used if the disk is bounded: in this case, the auxiliary normed space is with norm

      In mathematics, nuclear operators are an important class of linear operators introduced by Alexander Grothendieck in his doctoral dissertation. Nuclear operators are intimately tied to the projective tensor product of two topological vector spaces (TVSs).

      In the mathematical discipline of functional analysis, a differentiable vector-valued function from Euclidean space is a differentiable function valued in a topological vector space (TVS) whose domains is a subset of some finite-dimensional Euclidean space. It is possible to generalize the notion of derivative to functions whose domain and codomain are subsets of arbitrary topological vector spaces (TVSs) in multiple ways. But when the domain of a TVS-valued function is a subset of a finite-dimensional Euclidean space then many of these notions become logically equivalent resulting in a much more limited number of generalizations of the derivative and additionally, differentiability is also more well-behaved compared to the general case. This article presents the theory of -times continuously differentiable functions on an open subset of Euclidean space , which is an important special case of differentiation between arbitrary TVSs. This importance stems partially from the fact that every finite-dimensional vector subspace of a Hausdorff topological vector space is TVS isomorphic to Euclidean space so that, for example, this special case can be applied to any function whose domain is an arbitrary Hausdorff TVS by restricting it to finite-dimensional vector subspaces.

      In functional analysis, a topological homomorphism or simply homomorphism is the analog of homomorphisms for the category of topological vector spaces (TVSs). This concept is of considerable importance in functional analysis and the famous open mapping theorem gives a sufficient condition for a continuous linear map between Fréchet spaces to be a topological homomorphism.

      This is a glossary for the terminology in a mathematical field of functional analysis.

      F. Riesz's theorem is an important theorem in functional analysis that states that a Hausdorff topological vector space (TVS) is finite-dimensional if and only if it is locally compact. The theorem and its consequences are used ubiquitously in functional analysis, often used without being explicitly mentioned.

      In mathematics, particularly in functional analysis and topology, the closed graph theorem is a result connecting the continuity of certain kinds of functions to a topological property of their graph. In its most elementary form, it states that the closed graph theorem states that a linear function between two Banach spaces is continuous if and only if the graph of that function is closed.

      In functional analysis and related areas of mathematics, an almost open map between topological spaces is a map that satisfies a condition similar to, but weaker than, the condition of being an open map. As described below, for certain broad categories of topological vector spaces, all surjective linear operators are necessarily almost open.

      References

      1. Rudin 1991, p. 51-52.
      2. Rudin 1991, p. 50.
      3. Narici & Beckenstein 2011, pp. 459–483.
      4. Munkres 2000, pp. 163–172.
      5. Aliprantis, Charlambos; Kim C. Border (1999). "Chapter 17". Infinite Dimensional Analysis: A Hitchhiker's Guide (3rd ed.). Springer.
      6. Schaefer & Wolff 1999, p. 78.
      7. Trèves (2006), p. 173

      Bibliography