Einstein tensor

Last updated

In differential geometry, the Einstein tensor (named after Albert Einstein; also known as the trace-reversed Ricci tensor ) is used to express the curvature of a pseudo-Riemannian manifold. In general relativity, it occurs in the Einstein field equations for gravitation that describe spacetime curvature in a manner that is consistent with conservation of energy and momentum.

Contents

Definition

The Einstein tensor is a tensor of order 2 defined over pseudo-Riemannian manifolds. In index-free notation it is defined as

where is the Ricci tensor, is the metric tensor and is the scalar curvature, which is computed as the trace of the Ricci Tensor by . In component form, the previous equation reads as

The Einstein tensor is symmetric

and, like the on shell stress–energy tensor, has zero divergence:

Explicit form

The Ricci tensor depends only on the metric tensor, so the Einstein tensor can be defined directly with just the metric tensor. However, this expression is complex and rarely quoted in textbooks. The complexity of this expression can be shown using the formula for the Ricci tensor in terms of Christoffel symbols:

where is the Kronecker tensor and the Christoffel symbol is defined as

and terms of the form represent its partial derivative in the μ-direction, i.e.:

Before cancellations, this formula results in individual terms. Cancellations bring this number down somewhat.

In the special case of a locally inertial reference frame near a point, the first derivatives of the metric tensor vanish and the component form of the Einstein tensor is considerably simplified:

where square brackets conventionally denote antisymmetrization over bracketed indices, i.e.

Trace

The trace of the Einstein tensor can be computed by contracting the equation in the definition with the metric tensor . In dimensions (of arbitrary signature):

Therefore, in the special case of n = 4 dimensions, . That is, the trace of the Einstein tensor is the negative of the Ricci tensor's trace. Thus, another name for the Einstein tensor is the trace-reversed Ricci tensor. This case is especially relevant in the theory of general relativity.

Use in general relativity

The Einstein tensor allows the Einstein field equations to be written in the concise form:

where is the cosmological constant and is the Einstein gravitational constant.

From the explicit form of the Einstein tensor, the Einstein tensor is a nonlinear function of the metric tensor, but is linear in the second partial derivatives of the metric. As a symmetric order-2 tensor, the Einstein tensor has 10 independent components in a 4-dimensional space. It follows that the Einstein field equations are a set of 10 quasilinear second-order partial differential equations for the metric tensor.

The contracted Bianchi identities can also be easily expressed with the aid of the Einstein tensor:

The (contracted) Bianchi identities automatically ensure the covariant conservation of the stress–energy tensor in curved spacetimes:

The physical significance of the Einstein tensor is highlighted by this identity. In terms of the densitized stress tensor contracted on a Killing vector , an ordinary conservation law holds:

Uniqueness

David Lovelock has shown that, in a four-dimensional differentiable manifold, the Einstein tensor is the only tensorial and divergence-free function of the and at most their first and second partial derivatives. [1] [2] [3] [4] [5]

However, the Einstein field equation is not the only equation which satisfies the three conditions: [6]

  1. Resemble but generalize Newton–Poisson gravitational equation
  2. Apply to all coordinate systems, and
  3. Guarantee local covariant conservation of energy–momentum for any metric tensor.

Many alternative theories have been proposed, such as the Einstein–Cartan theory, that also satisfy the above conditions.

See also

Notes

  1. Lovelock, D. (1971). "The Einstein Tensor and Its Generalizations". Journal of Mathematical Physics. 12 (3): 498–502. Bibcode:1971JMP....12..498L. doi: 10.1063/1.1665613 .
  2. Lovelock, D. (1972). "The Four‐Dimensionality of Space and the Einstein Tensor". Journal of Mathematical Physics. 13 (6): 874–876. Bibcode:1972JMP....13..874L. doi:10.1063/1.1666069.
  3. Lovelock, D. (1969). "The uniqueness of the Einstein field equations in a four-dimensional space". Archive for Rational Mechanics and Analysis. 33 (1): 54–70. Bibcode:1969ArRMA..33...54L. doi:10.1007/BF00248156. S2CID   119985583.
  4. Farhoudi, M. (2009). "Lovelock Tensor as Generalized Einstein Tensor". General Relativity and Gravitation. 41 (1): 17–29. arXiv: gr-qc/9510060 . Bibcode:2009GReGr..41..117F. doi:10.1007/s10714-008-0658-9. S2CID   119159537.
  5. Rindler, Wolfgang (2001). Relativity: Special, General, and Cosmological. Oxford University Press. p. 299. ISBN   978-0-19-850836-6.
  6. Schutz, Bernard (May 31, 2009). A First Course in General Relativity (2 ed.). Cambridge University Press. p.  185. ISBN   978-0-521-88705-2.

Related Research Articles

<span class="mw-page-title-main">Stress–energy tensor</span> Tensor describing energy momentum density in spacetime

The stress–energy tensor, sometimes called the stress–energy–momentum tensor or the energy–momentum tensor, is a tensor physical quantity that describes the density and flux of energy and momentum in spacetime, generalizing the stress tensor of Newtonian physics. It is an attribute of matter, radiation, and non-gravitational force fields. This density and flux of energy and momentum are the sources of the gravitational field in the Einstein field equations of general relativity, just as mass density is the source of such a field in Newtonian gravity.

In the mathematical field of differential geometry, the Riemann curvature tensor or Riemann–Christoffel tensor is the most common way used to express the curvature of Riemannian manifolds. It assigns a tensor to each point of a Riemannian manifold. It is a local invariant of Riemannian metrics which measures the failure of the second covariant derivatives to commute. A Riemannian manifold has zero curvature if and only if it is flat, i.e. locally isometric to the Euclidean space. The curvature tensor can also be defined for any pseudo-Riemannian manifold, or indeed any manifold equipped with an affine connection.

In the general theory of relativity, the Einstein field equations relate the geometry of spacetime to the distribution of matter within it.

In differential geometry, a tensor density or relative tensor is a generalization of the tensor field concept. A tensor density transforms as a tensor field when passing from one coordinate system to another, except that it is additionally multiplied or weighted by a power W of the Jacobian determinant of the coordinate transition function or its absolute value. A tensor density with a single index is called a vector density. A distinction is made among (authentic) tensor densities, pseudotensor densities, even tensor densities and odd tensor densities. Sometimes tensor densities with a negative weight W are called tensor capacity. A tensor density can also be regarded as a section of the tensor product of a tensor bundle with a density bundle.

When studying and formulating Albert Einstein's theory of general relativity, various mathematical structures and techniques are utilized. The main tools used in this geometrical theory of gravitation are tensor fields defined on a Lorentzian manifold representing spacetime. This article is a general description of the mathematics of general relativity.

<span class="mw-page-title-main">Electromagnetic tensor</span> Mathematical object that describes the electromagnetic field in spacetime

In electromagnetism, the electromagnetic tensor or electromagnetic field tensor is a mathematical object that describes the electromagnetic field in spacetime. The field tensor was first used after the four-dimensional tensor formulation of special relativity was introduced by Hermann Minkowski. The tensor allows related physical laws to be written very concisely, and allows for the quantization of the electromagnetic field by Lagrangian formulation described below.

In general relativity, the Gibbons–Hawking–York boundary term is a term that needs to be added to the Einstein–Hilbert action when the underlying spacetime manifold has a boundary.

In physics, precisely in the study of the theory of general relativity and many alternatives to it, the post-Newtonian formalism is a calculational tool that expresses Einstein's (nonlinear) equations of gravity in terms of the lowest-order deviations from Newton's law of universal gravitation. This allows approximations to Einstein's equations to be made in the case of weak fields. Higher-order terms can be added to increase accuracy, but for strong fields, it may be preferable to solve the complete equations numerically. Some of these post-Newtonian approximations are expansions in a small parameter, which is the ratio of the velocity of the matter forming the gravitational field to the speed of light, which in this case is better called the speed of gravity. In the limit, when the fundamental speed of gravity becomes infinite, the post-Newtonian expansion reduces to Newton's law of gravity.

In differential geometry and mathematical physics, a spin connection is a connection on a spinor bundle. It is induced, in a canonical manner, from the affine connection. It can also be regarded as the gauge field generated by local Lorentz transformations. In some canonical formulations of general relativity, a spin connection is defined on spatial slices and can also be regarded as the gauge field generated by local rotations.

<span class="mw-page-title-main">Electromagnetic stress–energy tensor</span> Type of stress-energy tensor

In relativistic physics, the electromagnetic stress–energy tensor is the contribution to the stress–energy tensor due to the electromagnetic field. The stress–energy tensor describes the flow of energy and momentum in spacetime. The electromagnetic stress–energy tensor contains the negative of the classical Maxwell stress tensor that governs the electromagnetic interactions.

<span class="mw-page-title-main">Covariant formulation of classical electromagnetism</span> Ways of writing certain laws of physics

The covariant formulation of classical electromagnetism refers to ways of writing the laws of classical electromagnetism in a form that is manifestly invariant under Lorentz transformations, in the formalism of special relativity using rectilinear inertial coordinate systems. These expressions both make it simple to prove that the laws of classical electromagnetism take the same form in any inertial coordinate system, and also provide a way to translate the fields and forces from one frame to another. However, this is not as general as Maxwell's equations in curved spacetime or non-rectilinear coordinate systems.

<span class="mw-page-title-main">Maxwell's equations in curved spacetime</span> Electromagnetism in general relativity

In physics, Maxwell's equations in curved spacetime govern the dynamics of the electromagnetic field in curved spacetime or where one uses an arbitrary coordinate system. These equations can be viewed as a generalization of the vacuum Maxwell's equations which are normally formulated in the local coordinates of flat spacetime. But because general relativity dictates that the presence of electromagnetic fields induce curvature in spacetime, Maxwell's equations in flat spacetime should be viewed as a convenient approximation.

In the theory of general relativity, a stress–energy–momentum pseudotensor, such as the Landau–Lifshitz pseudotensor, is an extension of the non-gravitational stress–energy tensor that incorporates the energy–momentum of gravity. It allows the energy–momentum of a system of gravitating matter to be defined. In particular it allows the total of matter plus the gravitating energy–momentum to form a conserved current within the framework of general relativity, so that the total energy–momentum crossing the hypersurface of any compact space–time hypervolume vanishes.

The Newman–Penrose (NP) formalism is a set of notation developed by Ezra T. Newman and Roger Penrose for general relativity (GR). Their notation is an effort to treat general relativity in terms of spinor notation, which introduces complex forms of the usual variables used in GR. The NP formalism is itself a special case of the tetrad formalism, where the tensors of the theory are projected onto a complete vector basis at each point in spacetime. Usually this vector basis is chosen to reflect some symmetry of the spacetime, leading to simplified expressions for physical observables. In the case of the NP formalism, the vector basis chosen is a null tetrad: a set of four null vectors—two real, and a complex-conjugate pair. The two real members often asymptotically point radially inward and radially outward, and the formalism is well adapted to treatment of the propagation of radiation in curved spacetime. The Weyl scalars, derived from the Weyl tensor, are often used. In particular, it can be shown that one of these scalars— in the appropriate frame—encodes the outgoing gravitational radiation of an asymptotically flat system.

Alternatives to general relativity are physical theories that attempt to describe the phenomenon of gravitation in competition with Einstein's theory of general relativity. There have been many different attempts at constructing an ideal theory of gravity.

The harmonic coordinate condition is one of several coordinate conditions in general relativity, which make it possible to solve the Einstein field equations. A coordinate system is said to satisfy the harmonic coordinate condition if each of the coordinate functions xα satisfies d'Alembert's equation. The parallel notion of a harmonic coordinate system in Riemannian geometry is a coordinate system whose coordinate functions satisfy Laplace's equation. Since d'Alembert's equation is the generalization of Laplace's equation to space-time, its solutions are also called "harmonic".

<span class="mw-page-title-main">Lovelock theory of gravity</span>

In theoretical physics, Lovelock's theory of gravity (often referred to as Lovelock gravity) is a generalization of Einstein's theory of general relativity introduced by David Lovelock in 1971. It is the most general metric theory of gravity yielding conserved second order equations of motion in an arbitrary number of spacetime dimensions D. In this sense, Lovelock's theory is the natural generalization of Einstein's general relativity to higher dimensions. In three and four dimensions (D = 3, 4), Lovelock's theory coincides with Einstein's theory, but in higher dimensions the theories are different. In fact, for D > 4 Einstein gravity can be thought of as a particular case of Lovelock gravity since the Einstein–Hilbert action is one of several terms that constitute the Lovelock action.

In mathematics, Ricci calculus constitutes the rules of index notation and manipulation for tensors and tensor fields on a differentiable manifold, with or without a metric tensor or connection. It is also the modern name for what used to be called the absolute differential calculus, developed by Gregorio Ricci-Curbastro in 1887–1896, and subsequently popularized in a paper written with his pupil Tullio Levi-Civita in 1900. Jan Arnoldus Schouten developed the modern notation and formalism for this mathematical framework, and made contributions to the theory, during its applications to general relativity and differential geometry in the early twentieth century.

In the Newman–Penrose (NP) formalism of general relativity, independent components of the Ricci tensors of a four-dimensional spacetime are encoded into seven Ricci scalars which consist of three real scalars , three complex scalars and the NP curvature scalar . Physically, Ricci-NP scalars are related with the energy–momentum distribution of the spacetime due to Einstein's field equation.

<span class="mw-page-title-main">Dual graviton</span> Hypothetical particle found in supergravity

In theoretical physics, the dual graviton is a hypothetical elementary particle that is a dual of the graviton under electric-magnetic duality, as an S-duality, predicted by some formulations of supergravity in eleven dimensions.

References